期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Similar simulation study on the deformation and failure of surrounding rock of a large section chamber group under dynamic loading 被引量:10
1
作者 Xuesheng Liu Shilin Song +4 位作者 Yunliang Tan Deyuan Fan Jianguo Ning Xuebin Li Yanchun Yin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期495-505,共11页
Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is po... Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is poor,and it is difficult to control.In this paper,a similar simulation test was used to study the deformation and evolution laws of the surrounding rock of a triangle-shaped chamber group under different dynamic loads.The results showed that under dynamic loading,the vertical stress of the surrounding rock of the chamber group increased in an oscillatory form.The maximum stress concentration coefficient reached 4.09.The damage degree of the roof was greater than that of the two sides.The deformation of the roof was approximately 1.2 times that of the two sides.For the chamber closer to the power source,the stress oscillation amplitude of the surrounding rock was larger,and the failure was more serious.The force of the anchorage structure showed a phased increasing characteristic;additionally,the force of the anchorage structure on the adjacent side of the chambers was greater than that on the other side.This study reveals the deformation and failure evolution laws of the surrounding rock of large section chamber groups under dynamic loading. 展开更多
关键词 Dynamic disturbance Large section chamber group deformation and failure Similar simulation test
下载PDF
Deformation and failure study of surrounding rocks of dynamic pressure roadways in deep mines 被引量:9
2
作者 TIAN Jiansheng GAO Song 《Mining Science and Technology》 EI CAS 2010年第6期850-854,共5页
In order to understand the change rules of stress-displacement in surrounding rocks of dynamic pressure roadways in deep mines and to obtain a theoretical basis for analyses of roadway stability and designs of support... In order to understand the change rules of stress-displacement in surrounding rocks of dynamic pressure roadways in deep mines and to obtain a theoretical basis for analyses of roadway stability and designs of support, we established a coupling equation of adjacent rock strength, mining stress and supporting resistance on the basis of an elastic-plastic theory of mechanics. We obtained an analytical solution for stress and displacement distribution of elastic and plastic regions in surrounding rock of dy-namic pressure roadway.. Based on this theory, we have analyzed the changes in stress-displacement in elastic and plastic regions of surrounding rocks of dynamic pressure roadways in the Haizi Coal Mine. The results show that: 1) radial and tangential stress change violently within the first 4 m from the inner surface of a roadway after excavation; radial stress increases while tangential stress decreases within a range of about 6 m from the inner surface of the roadway as a function of q3; 2) radial and tangential stress increase with an increase in the mining pressure coefficient k; the increase in the rate of tangential stress is greater than that of ra-dial stress; 3) the radial displacement of the inner surface of roadways decreases with an increase in q3, provided that k remains unchanged. 展开更多
关键词 roadway under pressure deformation and failure elastic-plastic zone mining pressure coefficient
下载PDF
Deformation and failure modes of composite foundation with sub-embankment plain concrete piles 被引量:2
3
作者 Qian Su JunJie Huang 《Research in Cold and Arid Regions》 CSCD 2013年第5期614-625,共12页
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on... With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented. 展开更多
关键词 centrifuge model test composite foundation plain concrete pile deformation and failure modes EMBANKMENT soft ground
下载PDF
Deformation Mechanism and Stability of a Rocky Slope 被引量:4
4
作者 黄润秋 肖华波 +1 位作者 巨能攀 赵建军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2007年第1期77-84,共8页
A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appear... A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appeared deformation and tensile crack either on the surface or on the afteredge of the slope during excavation, and under a platform (elev. 488 m), two levels of slopes collapsed on the downriver side. Based on the investigation in situ and the analysis of the geological structure, the conceptual model of deformation and failure mechanism was erected for this slope. Furthermore, the deformation characteristics were studied with FLAC^3D numerical simulation. Comprehensive analysis shows that the whole deformation of the slope is unloading rebound in certain depth scope and the whole body does not slide along any weak interlayer. In addition, two parts with prominent local deformation in the shallow layer of the slope show the models of "creep sfiding-tensile cracking" and "slidlng-tensile cracking", respectively. Based on the above analysis, the corresponding project of support and reinforcement is proposed to make the slope more stable. 展开更多
关键词 high rock slope deformation and failure mechanism STABILITY SUPPORT
下载PDF
Deformation mechanism of high-stress and broken-expansion surrounding rock and supporting optimization based on the gray correlation theory 被引量:6
5
作者 余伟健 WANG Ping DU Shao-hua 《Journal of Chongqing University》 CAS 2014年第3期99-114,共16页
Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deform... Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d. 展开更多
关键词 deep high stress broken-expansion surrounding rock deformation and failure of roadways gray correlation theory
下载PDF
Roadway failure and support in a coal seam underlying a previously mined coal seam 被引量:5
6
作者 Lu Yinlong Wang Lianguo Zhang Bei 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期619-624,共6页
The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis... The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions. 展开更多
关键词 Adjacent coal seams Floor destruction of the upper coal Lower coal roadway deformation and failure Support measure
下载PDF
Granite deformation and behavior of acoustic emission sequence under the temperature and pressure condition at different crust depths
7
作者 蒋海昆 张流 周永胜 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期424-433,共10页
Results of triaxial compression experiment results show that granite rock strength increases with the depth until 30 km. In shallow crust, rock failure exhibits abrupt or quasi-abrupt instability under lower pressure.... Results of triaxial compression experiment results show that granite rock strength increases with the depth until 30 km. In shallow crust, rock failure exhibits abrupt or quasi-abrupt instability under lower pressure. Acoustic Emission (AE for short) distributed almost uniformly before and after failure. Go through downwards into the depth range with progressive failure feature, there are no or only a few number of AE before and after failure. In deeper range, rock failure shows some feature of quasi-abrupt instability under high pressure. There are still few AE before failure, but with the stick-slip, much more An events were detected after failure. Under the temperature and pressure condition of more deep crust (about 26 km), rock failure takes abrupt instability under high pressure as main feature, there are dense AE activities before failure and cumulated frequency of AE increases exponentially before the failure. In about 35 km depth range, rock strength decreases quickly with the depth and sample exhibits semi-ductile or ductile progressive fails, there are no AE being detected before and after failure. The b value of AE sequence before failure seems a little smaller than that after failure, and b value roughly decreased with depth. The numerical range of index α is the widest in about 18 km depth and becomes narrow in the condition of more shallow or more deep crust. So, when the temperature and pressure condition simulating the real environment of focal depth changes from shallow to deep in the crust, the range of a of microfracture sequence would undergo such an evolvement process that a changes from narrow to wide and then to narrow again. 展开更多
关键词 high temperature and high pressure GRANITE deformation and failure acoustic emission local scale index spectra
下载PDF
Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact
8
作者 Nikhil Khaire Gaurav Tiwari +1 位作者 Vivek Patel M.A.Iqbal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期56-73,共18页
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu... In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions. 展开更多
关键词 Honeycomb sandwich structure Offset impact Energy dissipation characteristic deformation and failure mode Geometry effect
下载PDF
Modeling rock specimens through 3D printing: Tentative experiments and prospects 被引量:22
9
作者 Quan Jiang Xiating Feng +3 位作者 Lvbo Song Yahua Gong Hong Zheng Jie Cui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期101-111,共11页
Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a ... Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) com- pressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in produc- ing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the sim- ulation of similar material modeling experiments. 展开更多
关键词 Rock mechanics Similar material 3Dprinting Geotechnical model deformation and failure
下载PDF
Cable-truss supporting system for gob-side entry driving in deep mine and its application 被引量:3
10
作者 Yin Qian Jing Hongwen +3 位作者 Dai Dapeng Zhu Tantan Zhao Honghui Meng Bo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期885-893,共9页
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulatio... In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained. 展开更多
关键词 Deep mine Gob-side entry driving Cable-truss supporting system deformation and failure STABILITY
下载PDF
Experiments of Brittle-Plastic Transition and Instability Modes of Juyongguan Granite at Different Temperatures and Pressures 被引量:3
11
作者 Zhou Yongsheng, Jiang Haikun and He ChangrongInstitute of Geology, Open Tectonophysics Laboratory, CSB, Beijing 100029, China 《Earthquake Research in China》 2003年第2期169-182,共14页
Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experimen... Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experiments show that brittle faulting is the major failure mode at temperature <300℃, but crystal-plastic deformation is dominate at temperature >800℃, and there is a transition with increasing temperature from semi-brittle faulting to cataclastic flow and semi-brittle flow at temperatures of 300~800℃. So, temperature is the most influential factor in brittle-plastic transition of granite and confining pressure is the second factor. The results also show that progressive failure of granite occurs at lower pressure or high temperature where there is crystal plasticity, and sudden instability occurs at room temperature and high pressure (>300MPa) or high temperature and great pressure(550℃600MPa ~650℃700MPa), and a broad regime of quasi-sudden instability exists between the T-P condition of progressive failure and sudden instability. So, instability modes of granite depend simultaneously on the pressure and temperature. 展开更多
关键词 deformation and failure Instability modes Brittle-plastic transition High temperature and great pressure GRANITE
下载PDF
Stability of High Slope Interbedded Strata with Low Dip Angle Constituted by Soft and Hard Rock Mass
12
作者 邓荣贵 周德培 张倬元 《Journal of Southwest Jiaotong University(English Edition)》 2002年第1期74-84,共11页
Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft whil... Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft while the sandstone is hard and contains many opening or closing joints with a high dip angle. Some are nearly parallel and the others are nearly decussated with the trend of the slopes. Many natural slopes are in deformation or sliding because of those reasons. The stability of cutting slopes and supporting method to be taken for their stability in civil engineering are important. In this paper, the stability and deformation of the slopes are studied. The methods of analysis and support design principle are analyzed also. Finally, the method put forward is applied to study Fengdian high cutting slope in Sichuan section of the express way from Chengdu to Shanghai. The results indicate that the method is effective. 展开更多
关键词 rock mass mechanics deformation and failure of high slope interbedded strata with low dip angle expressway slope
下载PDF
Geomechanical model test for analysis of surrounding rock behaviours in composite strata 被引量:5
13
作者 Linken Shi Hui Zhou +2 位作者 Ming Song Jingjing Lu Zhenjiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期774-786,共13页
Due to the large differences in physico-mechanical pro perties of composite strata,jamming,head sinking and other serious consequences occur frequently during tunnel boring machine(TBM)excavation.To analyse the stabil... Due to the large differences in physico-mechanical pro perties of composite strata,jamming,head sinking and other serious consequences occur frequently during tunnel boring machine(TBM)excavation.To analyse the stability of surrounding rocks in composite strata under the disturbance of TBM excavation,a geomechanical model test was carried out based on the Lanzhou water supply project.The evolution patterns and distribution characteristics of the strain,stress,and tunnel deformation and fracturing were analysed.The results showed that during TBM excavation in the horizontal composite formations(with upper soft and lower hard layers and with upper hard and lower soft layers),a significant difference in response to the surrounding rocks can be observed.As the strength ratio of the surrounding rocks decreases,the ratio of the maximum strain of the hard rock mass to that of the relatively soft rock mass gradually decreases.The radial stress of the relatively soft rock mass is smaller than that of the hard rock mass in both types of composite strata,indicating that the weak rock mass in the composite formation results in the difference in the mechanical behaviours of the surrounding rocks.The displacement field of the surrounding rocks obtained by the digital speckle correlation method(DSCM)and the macro-fracture morphology after tunnel excavation visually reflected the deformation difference of the composite rock mass.Finally,some suggestions and measures were provided for TBM excavation in composite strata,such as advance geological forecasting and effective monitoring of weak rock masses. 展开更多
关键词 Model test Tunnel excavation Composite strata deformation and failure mechanism Stability analysis
下载PDF
Investigation of mechanical properties of fractured marbles by uniaxial compression tests 被引量:5
14
作者 Hepine Xie Jianliang Pei +1 位作者 Jianping Zuo Ru Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期302-313,共12页
Uniaxial compression tests (UCTs) on 34 naturally fractured marble samples taken from the transportation tunnels of Jinping I1 hydropower station were carried out using the MTS815 Flex test GT rock testing system. R... Uniaxial compression tests (UCTs) on 34 naturally fractured marble samples taken from the transportation tunnels of Jinping I1 hydropower station were carried out using the MTS815 Flex test GT rock testing system. Rockburst proneness index WET is determined for the marble samples with the UCTs. According to the number, size and spatial structure characteristics of the internal natural fractures of the marble samples, fractures are basically divided into 4 types, namely, single fracture, parallel fracture, intersectant fracture and mixed fracture. The mechanical properties of naturally fractured rocks (4 types) are analyzed and compared with those of intact rock samples (without natural fractures). Experimental results indicate that failure characteristics of fractured rocks are appreciably controlled by fracture distribution or fracture patterns. In comparison with intact rocks, the failure of fractured marbles is a locally progressive failure process and finally rocks fail abruptly. Statistically, the uniaxial compressive strengths (UCSs) of rocks with single, parallel, intersectant and mixed fractures are 0.72, 0.69, 0.59 and 0.46 times those of the intact rocks, respectively. However, the elastic modulus of the fractured Yantang marbles is generally not different from that of intact rocks. But the elastic moduli of Baishan marble with single, intersectant and mixed fractures are 0.61, 0.62 and 0.45 times those of intact rocks, respectively. Experimental results also indicate that WEt of fractured marbles is generally smaller than that of intact marbles, which implies that rockburst intensity of fractured marble in field may be controlled to some extent. In addition, the bearing capacity of surrounding rocks is also reduced, thus the surrounding rocks should be supported or reinforced timely according to practical conditions. 展开更多
关键词 rock mechanics naturally fractured rocks deformation and failure of rocks rock strength
下载PDF
Time-dependent dilatancy for brittle rocks 被引量:2
15
作者 Jie Li Mingyang Wang +2 位作者 Kaiwen Xia Ning Zhang Houxu Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1054-1070,共17页
This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of ... This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of microcracks. The mechanism and dynamic process that microcracks initiate from local stress concentration and grow due to localized tensile stress are analyzed. Then, by generalizing the results from the analysis of single cracks, a parameter and associated equations for its evolution are developed to describe the behaviors of the microcracks. In this circumstance, the relationship between microcracking and dilatancy can be established, and the theoretical equations for characterizing the process of rock dilatancy behaviors are derived. Triaxial compression and creep tests are conducted to validate the developed theory. With properly chosen model parameters, the theory yields a satisfactory accuracy in comparison with the experimental results. 展开更多
关键词 Time-dependent dilatancy Microcracking Subcritical crack growth Rock deformation and failure
下载PDF
Characteristics and mechanisms of turboshaft engine axial compressor casing containment 被引量:4
16
作者 Zekan HE Xiaojun GUO +4 位作者 Haijun XUAN Xiaoming SHAN Xiaojing FAN Chuanyong CHEN Weirong HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期171-180,共10页
To investigate the containment characteristics and mechanisms of axial compressor blade and casing in turboshaft engine,experimental and simulation research is conducted on Titanium alloy axial compressor blades and s... To investigate the containment characteristics and mechanisms of axial compressor blade and casing in turboshaft engine,experimental and simulation research is conducted on Titanium alloy axial compressor blades and stainless steel simulator casings in this paper.Experiments for four thicknesses(from 0.8 mm to 1.4 mm)of casings are presented on high-speed spin tester.Perforation,ricochet with and without failure of the casings are obtained in test results.Three obvious bulges or dishing region are observed,petaling failure occurs in the first bulge or the third deformation region.Parabolic and elongated dimples are observed at the fracture surface.Finite Element(FE)models with calibrated Johnson-Cook material behavior law are built and analyzed by using explicit dynamic software for a better understanding on the containment behavior.Good agreement is obtained between the experimental observations and numerical predictions.The evolution of the impact force,energy absorption,temperature increase and the cracks’propagation are analyzed.Three force peaks occur in the impact process.Energy analysis reveals that penetration condition of ricochet with failure leads to most internal energy of the casing. 展开更多
关键词 Axial compressor Blade and casing containment Damage characteristic deformation and failure mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部