Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However...Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However, laboratory tests of intact rock samples cannot provide information about the strength and deformation behaviors of fractured rock masses that include many fractures of varying sizes, orientations and locations. On the other hand, large-scale in situ tests of fractured rock masses are economically costly and often not practical in reality at present. Therefore, numerical modeling becomes necessary. Numerical predicting using discrete element methods(DEM) is a suitable approach for such modeling because of their advantages of explicit representations of both fractures system geometry and their constitutive behaviors of fractures, besides that of intact rock matrix. In this study, to generically determine the compressive strength of fractured rock masses, a series of numerical experiments were performed on two-dimensional discrete fracture network models based on the realistic geometrical and mechanical data of fracture systems from feld mapping. We used the UDEC code and a numerical servo-controlled program for controlling the progressive compressive loading process to avoid sudden violent failure of the models. The two loading conditions applied are similar to the standard laboratory testing for intact rock samples in order to check possible differences caused by such loading conditions. Numerical results show that the strength of fractured rocks increases with the increasing confning pressure, and that deformation behavior of fractured rocks follows elasto-plastic model with a trend of strain hardening. The stresses and strains obtained from these numerical experiments were used to ft the well-known Mohr-Coulomb(MC) and Hoek-Brown(H-B) failure criteria, represented by equivalent material properties defning these two criteria. The results show that both criteria can provide fair estimates of the compressive strengths for all tested numerical models. Parameters of the elastic deformability of fractured models during elastic deformation stages were also evaluated, and represented as equivalent Young’s modulus and Poisson’s ratio as functions of lateral confning pressure. It is the frst time that such systematic numerical predicting for strength of fractured rocks was performed considering different loading conditions, with important fndings for different behaviors of fractured rock masses, compared with testing intact rock samples under similar loading conditions.展开更多
The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we revie...The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates.Following a comparison of the different methods that have been used to constrain the initial timing of collision,we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event,and that paleomagnetism presents independent evidence as an alternative,reliable,and quantitative research method.In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca.55 Ma and50 Ma and progressively closed eastwards,more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone(YTSZ) between ca.65 Ma and 63 Ma and then spreading both eastwards and westwards.While continental collision is a complicated process,including the processes of deformation,sedimentation,metamorphism,and magmatism,different researchers have tended to define the nature of this event based on their own understanding,an intuitive bias that has meant that its initial timing has remained controversial for decades.Here,we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods.展开更多
文摘Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However, laboratory tests of intact rock samples cannot provide information about the strength and deformation behaviors of fractured rock masses that include many fractures of varying sizes, orientations and locations. On the other hand, large-scale in situ tests of fractured rock masses are economically costly and often not practical in reality at present. Therefore, numerical modeling becomes necessary. Numerical predicting using discrete element methods(DEM) is a suitable approach for such modeling because of their advantages of explicit representations of both fractures system geometry and their constitutive behaviors of fractures, besides that of intact rock matrix. In this study, to generically determine the compressive strength of fractured rock masses, a series of numerical experiments were performed on two-dimensional discrete fracture network models based on the realistic geometrical and mechanical data of fracture systems from feld mapping. We used the UDEC code and a numerical servo-controlled program for controlling the progressive compressive loading process to avoid sudden violent failure of the models. The two loading conditions applied are similar to the standard laboratory testing for intact rock samples in order to check possible differences caused by such loading conditions. Numerical results show that the strength of fractured rocks increases with the increasing confning pressure, and that deformation behavior of fractured rocks follows elasto-plastic model with a trend of strain hardening. The stresses and strains obtained from these numerical experiments were used to ft the well-known Mohr-Coulomb(MC) and Hoek-Brown(H-B) failure criteria, represented by equivalent material properties defning these two criteria. The results show that both criteria can provide fair estimates of the compressive strengths for all tested numerical models. Parameters of the elastic deformability of fractured models during elastic deformation stages were also evaluated, and represented as equivalent Young’s modulus and Poisson’s ratio as functions of lateral confning pressure. It is the frst time that such systematic numerical predicting for strength of fractured rocks was performed considering different loading conditions, with important fndings for different behaviors of fractured rock masses, compared with testing intact rock samples under similar loading conditions.
基金supported by the Chinese Academy of Sciences(Grant No.XDB03010401)the National Key Research and Development Plan(Grant No.2016YFC0600303)National Natural Science Foundation of China(Grant No.41490615)
文摘The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates.Following a comparison of the different methods that have been used to constrain the initial timing of collision,we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event,and that paleomagnetism presents independent evidence as an alternative,reliable,and quantitative research method.In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca.55 Ma and50 Ma and progressively closed eastwards,more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone(YTSZ) between ca.65 Ma and 63 Ma and then spreading both eastwards and westwards.While continental collision is a complicated process,including the processes of deformation,sedimentation,metamorphism,and magmatism,different researchers have tended to define the nature of this event based on their own understanding,an intuitive bias that has meant that its initial timing has remained controversial for decades.Here,we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods.