Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys...Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.展开更多
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)...The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.展开更多
Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal...Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion.展开更多
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties...The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs.展开更多
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adso...Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.展开更多
The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction...The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.展开更多
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ...Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.展开更多
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an...Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.展开更多
Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this in...Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.展开更多
The stimulator of interferon genes(STING),an integral adaptor protein in the DNA-sensing pathway,plays a pivotal role in the innate immune response against infections.Additionally,it presents a valuable therapeutic ta...The stimulator of interferon genes(STING),an integral adaptor protein in the DNA-sensing pathway,plays a pivotal role in the innate immune response against infections.Additionally,it presents a valuable therapeutic target for infectious diseases and cancer.We observed that fangchinoline(Fan),a bis-benzylisoquinoline alkaloid(BBA),effectively impedes the replication of vesicular stomatitis virus(VSV),encephalomyocarditis virus(EMCV),influenza A virus(H1N1),and herpes simplex virus-1(HSV-1)in vitro.Fan treatment significantly reduced the viral load,attenuated tissue inflammation,and improved survival in a viral sepsis mouse model.Mechanistically,Fan activates the antiviral response in a STING-dependent manner,leading to increased expression of interferon(IFN)and interferon-stimulated genes(ISGs)for potent antiviral effects in vivo and in vitro.Notably,Fan interacts with STING,preventing its degradation and thereby extending the activation of IFN-based antiviral responses.Collectively,our findings highlight the potential of Fan,which elicits antiviral immunity by suppressing STING degradation,as a promising candidate for antiviral therapy.展开更多
With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutan...With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.展开更多
Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning the...Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.展开更多
The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environm...The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.展开更多
The alpine terrestrials of the Maloti-Drakensberg in southern Africa play crucial roles in ecosystem functions and livelihoods,yet they face escalating degradation from various factors including overgrazing and climat...The alpine terrestrials of the Maloti-Drakensberg in southern Africa play crucial roles in ecosystem functions and livelihoods,yet they face escalating degradation from various factors including overgrazing and climate change.This study employs advanced Digital Soil Mapping(DSM)techniques coupled with remote sensing to map and assess wetland coverage and degradation in the northern Maloti-Drakensberg.The model achieved high accuracies of 96%and 92%for training and validation data,respectively,with Kappa statistics of 0.91 and 0.83,marking a pioneering automated attempt at wetland mapping in this region.Terrain attributes such as terrain wetness index(TWI)and valley depth(VD)exhibit significant positive correlations with wetland coverage and erosion gully density,Channel Network Depth and slope were negative correlated.Gully density analysis revealed terrain attributes as dominant factors driving degradation,highlighting the need to consider catchment-specific susceptibility to erosion.This challenge traditional assumptions which mainly attribute wetland degradation to external forces such as livestock overgrazing,ice rate activity and climate change.The sensitivity map produced could serve as a basis for Integrated Catchment Management(ICM)projects,facilitating tailored conservation strategies.Future research should expand on this work to include other highland areas,explore additional covariates,and categorize wetlands based on hydroperiod and sensitivity to degradation.This comprehensive study underscores the potential of DSM and remote sensing in accurately assessing and managing wetland ecosystems,crucial for sustainable resource management in alpine regions.展开更多
In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at differe...In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated.Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix.EX400 with higher volume fraction of non-DRXed grains exhibited higher strength,which was mainly due to strong texture,high dislocation density,and high volume fraction of lamellar LPSO.The EX420 with higher volume fraction of DRXed grains showed higher degradation rate,which was mainly due to the higher density of grain boundary.The EX400 exhibited excellent comprehensive properties with tensile yield strength(TYS)of 334 MPa,ultimate tensile strength(UTS)of 484 MPa and elongation(EL)of 7.4%,ultimate compressive strength(UCS)of 638 MPa and compressive yield strength(CYS)of 443 MPa,degradation rate of 86.1 mg/cm^(2)/h at 93℃in 3 wt.%KCl solution.展开更多
In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge...In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge.The research focused on the interaction of the plasma-generated species and the catalyst,as well as the role of the catalyst in the degradation process.Plasma decomposition of the anthraquinone reactive dye Reactive Blue 19(RB 19) was performed in a selfmade reactor system.Bi_(2)O_(3) was prepared by electrodeposition followed by thermal treatment,and characterized by x-ray diffraction,scanning electron microscopy and energy-dispersive xray techniques.It was observed that the catalyst promoted decomposition of plasma-generated H_(2)O_(2) into ·OH radicals,the principal dye-degrading reagent,which further attacked the dye molecules.The catalyst improved the decolorization rate by 2.5 times,the energy yield by 93.4%and total organic carbon removal by 7.1%.Excitation of the catalyst mostly occurred through strikes by plasma-generated reactive ions and radical species from the air,accelerated by the electric field,as well as by fast electrons with an energy of up to 15 eV generated by the streamers reaching the liquid surface.These strikes transferred the energy to the catalyst and created the electrons and holes,which further reacted with H_(2)O_(2) and water,producing ·OH radicals.This was indentified as the primary role of the catalyst in this process.Decolorization reactions followed pseudo first-order kinetics.Production of H_(2)O_(2) and the dye degradation rate increased with increase in the input voltage.The optimal catalyst dose was 500 mg·dm^(-3).The decolorization rate was a little lower in river water compared with that in deionized water due to the side reactions of ·OH radicals with organic matter and inorganic ions dissolved in the river water.展开更多
Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this re...Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region.Based on the meteorological station data and MODIS land surface temperature data,we mapped the distribution of permafrost using the surface frost number(SFN)model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020.We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index(NDVI).We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes.Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×10^(5) km^(2) in the past 40 a.The permafrost stability continued to weaken,with large areas of stable permafrost(SP)converted to semi-stable permafrost(SSP)and unstable permafrost(UP)after 2000.From 1982 to 2020,NDVI exhibited a significant decreasing trend in the seasonal frost(SF)region,while it exhibited an increasing trend in the permafrost region.NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000.In 78.63%of the permafrost region,there was a negative correlation between the SFN and NDVI from 1982 to 2020.In the SP and SSP regions,the correlation between the SFN and NDVI was predominantly negative,while in the UP region,it was predominantly positive.Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020,and the impact of precipitation on NDVI variations increased after 2000.The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change.展开更多
In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi...In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.展开更多
High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of w...High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.展开更多
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
文摘Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.
基金the funding support from the National Natural Science Foundation of China(21906072,22006057)the Natural Science Foundation of Jiangsu Province(BK20190982)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province。
文摘The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.
基金supported by the National Key Research and Development Program of China(No.2023YFD2401504)the National Natural Science Foundation of China(Nos.U21A20271,32225039)+2 种基金the Key R&D Program of Shandong Province(No.2022TZXD001)the Earmarked Fund for CARS(No.CARS-48)the Qingdao Shinan District Science and Technology Plan Project(No.2022-3-010-SW).
文摘Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion.
基金financial grants from DST,India,through the projects DST/TSG/PT/2009/23,DST/TMD/ICMAP/2K20/03,and DST/CRG/2019/002164,Deity,India,no.5(9)/2012-NANO(Vol.II)the Max-Planck-Gesellschaft IGSTC/MPG/PG(PKI)/2011A/48 and MHRD,India,through the SPARC project SPARC/2018-2019/P1097/SLPMRF(Prime Minister's Research Fellowship),Ministry of Education,Government of India for providing funds to carry out this research.
文摘The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs.
基金National Natural Science Foundation of China(Grant No.21902001,22179001)Distinguished Young Research Project of Anhui Higher Education Institution(Grant No.2022AH020007)+1 种基金University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2023-009)Higher Education Natural Science Foundation of Anhui Province(Grant No.2023AH050114).
文摘Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.
基金supported by the National Natural Science Foundation of China(52222002)Bureau of International Cooperation of Chinese Academy of Sciences(032GJHZ2022035MI)State Key Laboratory of Environmental Aquatic Chemistry(23Z01ESPCR).
文摘The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.22393904)the National Key Research and Development Program of China (Grant No.2022YFB2502200)+1 种基金Beijing Municipal Science&Technology Commission (Grant No.Z221100006722015)the New Energy Vehicle Power Battery Life Cycle Testing and Verification Public Service Platform Project (Grant No.2022-235-224)。
文摘Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.
基金supported by the National Natural Science Foundation of China(52270132).
文摘Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.
文摘Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.
基金supported by the Beijing Nova Program,China(Grant No.:20230484342)the Young Elite Scientists Sponsorship Program by China Association of Chinese Medicine(CACM),China(Grant No.:2023-QNRC2-A02)the Joint Fund of Beijing University of Traditional Chinese Medicine and USANA Health Sciences corporation,China(Grant No.:BUCM2023-JS-KF-032).
文摘The stimulator of interferon genes(STING),an integral adaptor protein in the DNA-sensing pathway,plays a pivotal role in the innate immune response against infections.Additionally,it presents a valuable therapeutic target for infectious diseases and cancer.We observed that fangchinoline(Fan),a bis-benzylisoquinoline alkaloid(BBA),effectively impedes the replication of vesicular stomatitis virus(VSV),encephalomyocarditis virus(EMCV),influenza A virus(H1N1),and herpes simplex virus-1(HSV-1)in vitro.Fan treatment significantly reduced the viral load,attenuated tissue inflammation,and improved survival in a viral sepsis mouse model.Mechanistically,Fan activates the antiviral response in a STING-dependent manner,leading to increased expression of interferon(IFN)and interferon-stimulated genes(ISGs)for potent antiviral effects in vivo and in vitro.Notably,Fan interacts with STING,preventing its degradation and thereby extending the activation of IFN-based antiviral responses.Collectively,our findings highlight the potential of Fan,which elicits antiviral immunity by suppressing STING degradation,as a promising candidate for antiviral therapy.
基金supported by the National Key Research and Development Program of China(2019YFC1904100)the National Natural Science Foundation of China(21503144)+3 种基金the Science and Technology Innovation Project for Students of Hebei Province(22E50174D)the Science and Technology Project of Hebei Education Department(QN2021047)the Program of Hebei Vocational University of Industry and Technology(dxs202207,ZY202401)the Key Program of Natural Science of Hebei Province(B2020209017).
文摘With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.
基金the financial support from the National Natural Science Foundation of China(52202338)。
文摘Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.
基金the financial support of the National Key Research and Development Program of China(2018YFC1106703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)。
文摘The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.
基金The Afromontane Research Unit of the University of the Free State partially funded this project.
文摘The alpine terrestrials of the Maloti-Drakensberg in southern Africa play crucial roles in ecosystem functions and livelihoods,yet they face escalating degradation from various factors including overgrazing and climate change.This study employs advanced Digital Soil Mapping(DSM)techniques coupled with remote sensing to map and assess wetland coverage and degradation in the northern Maloti-Drakensberg.The model achieved high accuracies of 96%and 92%for training and validation data,respectively,with Kappa statistics of 0.91 and 0.83,marking a pioneering automated attempt at wetland mapping in this region.Terrain attributes such as terrain wetness index(TWI)and valley depth(VD)exhibit significant positive correlations with wetland coverage and erosion gully density,Channel Network Depth and slope were negative correlated.Gully density analysis revealed terrain attributes as dominant factors driving degradation,highlighting the need to consider catchment-specific susceptibility to erosion.This challenge traditional assumptions which mainly attribute wetland degradation to external forces such as livestock overgrazing,ice rate activity and climate change.The sensitivity map produced could serve as a basis for Integrated Catchment Management(ICM)projects,facilitating tailored conservation strategies.Future research should expand on this work to include other highland areas,explore additional covariates,and categorize wetlands based on hydroperiod and sensitivity to degradation.This comprehensive study underscores the potential of DSM and remote sensing in accurately assessing and managing wetland ecosystems,crucial for sustainable resource management in alpine regions.
基金the financial support from the National Key Research and Development Program of China(No.2021YFB3701100)the Natural Science Foundation Commission of China(Grant Nos.U20A20234,51874062)+3 种基金the Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxm X0010)Fundamental Research Funds for the Central Universities(No.2022CDJKYJH004)the Science and Technology Major Project of Shanxi Province(No.20191102008)University Innovation Research Group of Chongqing(CXQT20023)。
文摘In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated.Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix.EX400 with higher volume fraction of non-DRXed grains exhibited higher strength,which was mainly due to strong texture,high dislocation density,and high volume fraction of lamellar LPSO.The EX420 with higher volume fraction of DRXed grains showed higher degradation rate,which was mainly due to the higher density of grain boundary.The EX400 exhibited excellent comprehensive properties with tensile yield strength(TYS)of 334 MPa,ultimate tensile strength(UTS)of 484 MPa and elongation(EL)of 7.4%,ultimate compressive strength(UCS)of 638 MPa and compressive yield strength(CYS)of 443 MPa,degradation rate of 86.1 mg/cm^(2)/h at 93℃in 3 wt.%KCl solution.
基金financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (No.451-03-47/2023-01/200124)。
文摘In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge.The research focused on the interaction of the plasma-generated species and the catalyst,as well as the role of the catalyst in the degradation process.Plasma decomposition of the anthraquinone reactive dye Reactive Blue 19(RB 19) was performed in a selfmade reactor system.Bi_(2)O_(3) was prepared by electrodeposition followed by thermal treatment,and characterized by x-ray diffraction,scanning electron microscopy and energy-dispersive xray techniques.It was observed that the catalyst promoted decomposition of plasma-generated H_(2)O_(2) into ·OH radicals,the principal dye-degrading reagent,which further attacked the dye molecules.The catalyst improved the decolorization rate by 2.5 times,the energy yield by 93.4%and total organic carbon removal by 7.1%.Excitation of the catalyst mostly occurred through strikes by plasma-generated reactive ions and radical species from the air,accelerated by the electric field,as well as by fast electrons with an energy of up to 15 eV generated by the streamers reaching the liquid surface.These strikes transferred the energy to the catalyst and created the electrons and holes,which further reacted with H_(2)O_(2) and water,producing ·OH radicals.This was indentified as the primary role of the catalyst in this process.Decolorization reactions followed pseudo first-order kinetics.Production of H_(2)O_(2) and the dye degradation rate increased with increase in the input voltage.The optimal catalyst dose was 500 mg·dm^(-3).The decolorization rate was a little lower in river water compared with that in deionized water due to the side reactions of ·OH radicals with organic matter and inorganic ions dissolved in the river water.
基金funded by the National Natural Science Foundation of China(41641024)the Science and the Technology Project of Heilongjiang Communications Investment Group(JT-100000-ZC-FW-2021-0182)the Field Scientific Observation and Research Station of the Ministry of Education-Geological Environment System of the Permafrost Area in Northeast China(MEORS-PGSNEC).
文摘Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region.Based on the meteorological station data and MODIS land surface temperature data,we mapped the distribution of permafrost using the surface frost number(SFN)model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020.We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index(NDVI).We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes.Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×10^(5) km^(2) in the past 40 a.The permafrost stability continued to weaken,with large areas of stable permafrost(SP)converted to semi-stable permafrost(SSP)and unstable permafrost(UP)after 2000.From 1982 to 2020,NDVI exhibited a significant decreasing trend in the seasonal frost(SF)region,while it exhibited an increasing trend in the permafrost region.NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000.In 78.63%of the permafrost region,there was a negative correlation between the SFN and NDVI from 1982 to 2020.In the SP and SSP regions,the correlation between the SFN and NDVI was predominantly negative,while in the UP region,it was predominantly positive.Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020,and the impact of precipitation on NDVI variations increased after 2000.The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change.
基金supported by National Natural Science Foundations of China (Nos. 52307163 and 12305279)the China Postdoctoral Science Foundation (Nos. 2023M740498 and 2022M710590)Postdoctoral Fellowship Program of CPSF (No. GZC20230348)。
文摘In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.
基金supported by the sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C389)the Xinjiang University Doctoral Start-Up Foundation(No.620321029)the Science and Technology Planning Project of State Administration for Market Regulation(No.2022MK201).
文摘High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.