Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic...Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditio...Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. The delivery of therapeutic compounds to the target site is a major challenge in the treatment of many diseases. Objective: This study aims to evaluate activated charcoal nanoparticles as a drug delivery system for anticancer agents (Sorafenib and Doxorubicin) in Hepatocellular Cancer Stem Cells. Method: The percent efficiency of entrapment (% EE) of the doxorubicin and sorafenib entrapped onto the activated charcoal was obtained by determining the free doxorubicin and sorafenib concentration in the supernatant-prepared solutions. Then the characterizations of nanoparticles were formed by determination of the particle size distribution, zeta potential, and polydispersity index (PDI). The anticancer activity of activated Charcoal, Doxorubicin-ACNP, sorafenib-ACNP, free doxorubicin, and free sorafenib solutions was measured based on cell viability percentage in HepG2 cell lines (ATCC-CCL 75). In vitro RBC’s toxicity of Doxorubicin/sorafenib loaded charcoal was estimated by hemolysis percentage. Results: The synthesized Doxorubicin-ACNP and Sorafenib-ACNP were evaluated and their physiochemical properties were also examined. Essentially, the percent Efficiency of Entrapment (EE %) was found to be 87.5% and 82.66% for Doxorubicin-ACNP and Sorafenib-ACNP, respectively. The loading capacity was 34.78% and 24.31% for Doxorubicin-ACNP and Sorafenib-ACNP. Using the Dynamic Light scattering [DLS] for the determination of the hydrodynamic size and surface zeta potential, a narrow sample size distribution was obtained of (18, 68, and 190 nm for charcoal, 105, 255, and 712 nm for doxorubicin, and 91, 295, and 955 nm for sorafenib), respectively. A surface charge of −13.2, −15.6 and −17 was obtained for charcoal, doxorubicin/charcoal, and sorafenib/charcoal nanoparticles. The cytotoxic activity of Doxorubicin-ACNP and Sorafenib-ACNP was evaluated in-vitro against HepG2 cell lines and it was observed that Drug loaded ACNP improved anticancer activity when compared to Doxorubicin or Sorafenib alone. Moreover, testing the toxicity potential of DOX-ACNP and Sorafenib-ACNP showed a significant reduction in the hemolysis of red blood cells when compared to Doxorubicin and Sorafenib alone. Conclusion: In conclusion, it is notable to state that this study is regarded as the first to investigate the use of Activated charcoal for the loading of Doxorubicin and Sorafenib for further use in the arena of hepatocellular carcinoma. Doxorubicin-ACNP and Sorafenib-ACNP showed noteworthy anticancer activity along with a reduced potential of RBCs hemolysis rendering it as an efficacious carrier with a low toxicity potential.展开更多
Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic ...Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver’s metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting.Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis;nevertheless,the working mechanism of anti-fibrotic medications is not fully understood,and there is a need to design delivery systems that are well-understood and can aid in cirrhosis.Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery.As a result,the capability of nanoparticles in hepatic delivery was explored.Another approach is targeted drug delivery,which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells(HSCs).We have addressed numerous delivery strategies that target HSCs,which can eventually aid in fibrosis.Recently genetics have proved to be useful,and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted.To summarize,this review paper sheds light on themost recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.展开更多
Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescen...Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescence in vitro and increases longevity in vivo,but has poor water solubility and limited bioavailability.In this study,a food-grade and senescent cell-targeted delivery system for fisetin was developed based on whey protein isolate-galactooligosaccharides(WPI-GOS)Maillard conjugate,which could recognize senescence associatedβ-galactosidase in senescent cells.The fisetin nanoparticles possessed a high encapsulation efficiency,excellent dispersibility in water,good storage stability and well biocompatibility.Moreover,they could effectively accumulate and retain in senescent cells with excellent senescent cell-targeting efficacy,and inhibit the oxidative stress-induced cellular senescence in vitro.Thus,this novel nanoparticle system based on WPI-GOS Maillard conjugate showed promise to deliver hydrophobic bioactive ingredients like fisetin to senescent cells to improve their bioavailability and anti-senescence effect.展开更多
BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL system...BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.展开更多
Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective deli...Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells.To be excited,the development of ionizable drug delivery systems(IDDSs)has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019(COVID-19)in 2021.Compared with conventional cationic gene vectors,IDDSs can decrease the toxicity of carriers to cell membranes,and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures.Despite the progress,there remain necessary requirements for designing more efficient IDDSs for precise gene therapy.Herein,we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms.The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of plasmid DNA(pDNA)and four kinds of RNA.In particular,organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity.We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future,and indicate ideas for developing next generation gene vectors.展开更多
The complication of diabetes,which is known as diabetic foot ulcer(DFU),is a significant concern due to its association with high rates of disability and mortality.It not only severely affects patients’quality of lif...The complication of diabetes,which is known as diabetic foot ulcer(DFU),is a significant concern due to its association with high rates of disability and mortality.It not only severely affects patients’quality of life,but also imposes a substantial burden on the healthcare system.In spite of efforts made in clinical practice,treating DFU remains a challenging task.While mesenchymal stem cell(MSC)therapy has been extensively studied in treating DFU,the current efficacy of DFU healing using this method is still inadequate.However,in recent years,several MSCs-based drug delivery systems have emerged,which have shown to increase the efficacy of MSC therapy,especially in treating DFU.This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.展开更多
Cancer immunotherapy,a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity,is currently an important clinical strategy for cancer treatment;however,tumors can develop drug resi...Cancer immunotherapy,a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity,is currently an important clinical strategy for cancer treatment;however,tumors can develop drug resistance to immune surveillance,resulting in poor response rates and low therapeutic efficacy.In addition,changes in genes and signaling pathways in tumor cells prevent susceptibility to immunotherapeutic agents.Furthermore,tumors create an immunosuppressive microenvironment via immunosuppressive cells and secrete molecules that hinder immune cell and immune modulator infiltration or induce immune cell malfunction.To address these challenges,smart drug delivery systems(SDDSs)have been developed to overcome tumor cell resistance to immunomodulators,restore or boost immune cell activity,and magnify immune responses.To combat resistance to small molecules and monoclonal antibodies,SDDSs are used to co-deliver numerous therapeutic agents to tumor cells or immunosuppressive cells,thus increasing the drug concentration at the target site and improving efficacy.Herein,we discuss how SDDSs overcome drug resistance during cancer immunotherapy,with a focus on recent SDDS advances in thwarting drug resistance in immunotherapy by combining immunogenic cell death with immunotherapy and reversing the tumor immunosuppressive microenvironment.SDDSs that modulate the interferon signaling pathway and improve the efficacy of cell therapies are also presented.Finally,we discuss potential future SDDS perspectives in overcoming drug resistance in cancer immunotherapy.We believe that this review will contribute to the rational design of SDDSs and development of novel techniques to overcome immunotherapy resistance.展开更多
Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modi...Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy.展开更多
Curcumin is a natural compound with a diketone structure,which can control the growth,metastasis,recurrence,neovascularization,invasion,and drug resistance of gastrointestinal tumors by inhibiting nuclear factorκB,ov...Curcumin is a natural compound with a diketone structure,which can control the growth,metastasis,recurrence,neovascularization,invasion,and drug resistance of gastrointestinal tumors by inhibiting nuclear factorκB,overexpression of tumor cells,vascular endothelial growth factor,etc.However,due to the low bioavailability of curcumin formulation,it did not fully exert its pharmacological effects,and its application and development in the treatment of various malignant tumors are still limited.This review summarizes the research on drug delivery systems of curcumin combating digestive tract tumors in order to further reduce the toxic side effects of curcumin-containing drugs and fully exert their pharmacological activities,and improve their bioavailability and clinical value.展开更多
A novel light responsive nanosphere was constructed,and it was used as a drug carrier to investigate the loading and release properties of the Quercetin(QU).In this paper,mesoporous silica nanoparticles(MSN)were used ...A novel light responsive nanosphere was constructed,and it was used as a drug carrier to investigate the loading and release properties of the Quercetin(QU).In this paper,mesoporous silica nanoparticles(MSN)were used as a substrate,and 3-aminopropyl triethyoxysilane was used as a surface modification agent to introduce—NH_(2),and the azobenzene-4,4’-dicarboxylic acid(AZO)was used as light responsive agent to introduce the group of—N=N—,and thenβ-cyclodextrin(β-CD)was combined with AZO through host-guest interaction to construct light responsive nanoparticles(MSN@β-CD).The structure and properties of the carrier were analyzed by FTIR,BET,XPS,TGA,XRD,SEM and TEM.In vitro drug release studies showed the release rate of QU@MSN@β-CD(dark)was 12.19%within 72 h,but the release rate of QU@MSN@β-CD(light 10 min)was 26.09%,exhibiting a light-responsive property.The CCK8 tests demonstrated that MSN@β-CD could significantly decrease the toxicity of QU.Therefore,the controllable light-responsive drug delivery system has great application prospects.展开更多
The world has been dealing with a novel severe acute respiratory syndrome(SARS-CoV-2)since the end of 2019,which threatens the lives of many peopleworldwide.COVID-19 causes respiratory infection with different symptom...The world has been dealing with a novel severe acute respiratory syndrome(SARS-CoV-2)since the end of 2019,which threatens the lives of many peopleworldwide.COVID-19 causes respiratory infection with different symptoms,from sneezing and coughing to pneumonia and sometimes gastric symptoms.Researchers worldwide are actively developing novel drug delivery systems(DDSs),such as stimuli-responsive DDSs.The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating“smart”DDS that can effectively control dosage,sustained release,individual variations,and targeted delivery.To conduct a comprehensive literature survey for this article,the terms“Stimuli-responsive”,“COVID-19”and“Drug delivery”were searched on databases/search engines like“Google Scholar”,“NCBI”,“PubMed”,and“Science Direct”.Many different types of DDSs have been proposed,including those responsive to various exogenous(light,heat,ultrasound andmagnetic field)or endogenous(microenvironmental changes in pH,ROS and enzymes)stimuli.Despite significant progress in DDS research,several challenging issues must be addressed to fill the gaps in the literature.Therefore,this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.展开更多
With the influence of many factors such as the aging of the population,the younger smokers,and the serious air pollution,the incidence of chronic respiratory diseases is increasing year by year.In the treatment of res...With the influence of many factors such as the aging of the population,the younger smokers,and the serious air pollution,the incidence of chronic respiratory diseases is increasing year by year.In the treatment of respiratory diseases,clinical intervention is still mainly based on drug control of pulmonary symptoms.However,systemic drugs have disadvantages such as many adverse reactions and severe systemic side effects.In recent years,the research and development of local drug delivery systems for the respiratory tract has brought new changes to the treatment of respiratory diseases.Locally delivered drugs can directly act on the airways and have the characteristics of fast onset,good curative effect and small side effects.It is a simple,efficient and safe treatment method,which has a very significant effect,and has become a hot topic of current research and promotion.This paper briefly reviews the development track and latest research progress of respiratory local drug delivery systems at home and abroad,in order to provide reference for clinical workers in drug selection and application.展开更多
The data included in this analysis were from two clinical studies (Study A and Study B), which evaluated JUUL electronic nicotine delivery systems (ENDS) against combustible cigarettes. In both studies, biomarkers of ...The data included in this analysis were from two clinical studies (Study A and Study B), which evaluated JUUL electronic nicotine delivery systems (ENDS) against combustible cigarettes. In both studies, biomarkers of exposure including nicotine equivalents, NNAL, 3-HPMA, MHBMA, S-PMA and COHb were measured. Coefficients of variation (CV) of the biomarkers were calculated and compared. Pearson correlation analysis was used to examine the correlation between the biomarkers. Seven out of the nine biomarkers of exposure in Study A were highly variable (CV > 30%). Higher variability was observed in NNAL, MHBMA and S-PMA than in other biomarkers. After adult cigarette smokers switched from combustible cigarettes to JUUL ENDS, the correlation between nicotine equivalents and other biomarkers became weaker. A similar trend was observed between NNAL and other biomarkers. In Study B, the participants in the 5% ENDS group had higher nicotine equivalent levels than those in the 3% ENDS group. The higher nicotine levels did not result in a substantial increase in the levels of other biomarkers (except 1-OHP). The correlations between nicotine equivalents and 3-HPMA, MHBMA, S-PMA, COHb, HMPMA, and 1-OHP were weak in both the 5% and 3% ENDS groups.展开更多
Polyphenols are a class of chemical components that are beneficial to human health.Polyphenol compounds provide advanced biomedical applications due to their antioxidant and anti-inflammatory activity.They can also pl...Polyphenols are a class of chemical components that are beneficial to human health.Polyphenol compounds provide advanced biomedical applications due to their antioxidant and anti-inflammatory activity.They can also play a role in reducing the risk of various chronic diseases.However,most polyphenols are unstable compounds with low absorption and poor bioavailability which greatly limited their applications.Therefore,the delivery of polyphenols to specific parts of the body has become a therapeutic necessity.In this study,the research of polyphenol delivery systems such as microspheres,nanoparticles,liposomes and gels were mainly summarized.The action mechanism of polyphenols to intestinal microbiota,tumor cells,the brain,pancreas,and liver was analyzed.展开更多
With the deepening of China’s health-care reform,an integrated delivery system has gradually emerged with the function of improving the efficiency of the health-care delivery system.For China’s integrated delivery s...With the deepening of China’s health-care reform,an integrated delivery system has gradually emerged with the function of improving the efficiency of the health-care delivery system.For China’s integrated delivery system,a medical consortium plays an important role in integrating public hospitals and primary care facilities.The first medical consortium policy issued after the COVID-19 pandemic apparently placed hope on accelerating the implementation of a medical consortium and tiered health-care delivery system.This paper illustrates the possible future pathway of China’s medical consortium through retrospection of the 10-year process,changes of the series of policies,and characteristics of the policy issued in 2020.We considered that a fully integrated medical consortium would be a major phenomenon in China's medical industry,which would lead to the formation of a dualistic care pattern in China.展开更多
By analyzing the observed phenomena and the data collected in the study, a multi-compartment linear circulation model for targeting drug delivery system was developed and the function formulas of the drug concentratio...By analyzing the observed phenomena and the data collected in the study, a multi-compartment linear circulation model for targeting drug delivery system was developed and the function formulas of the drug concentration-time in blood and target organ by computing were figured out. The drug concentration-time curve for target organ can be plotted with reference to the data of drug concentration in blood according to the model. The pharmacokinetic parameters of the drug in target organ could also be obtained. The practicability of the model was further checked by the curves of drug concentration-time in blood and target organ(liver) of liver-targeting nanoparticles in animal tests. Based on the liver drug concentration-time curves calculated by the function formula of the drug in target organ, the pharmacokinetic behavior of the drug in target organ(liver) was analyzed by statistical moment, and its pharmacokinetic parameters in liver were obtained. It is suggested that the (relative targeting index( can be used for quantitative evaluation of the targeting drug delivery systems.展开更多
Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors. GV1, GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine a...Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors. GV1, GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex. Using pSV2-β-galactosidase as a reporter gene, it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) andhuman malignant melanoma cell lines (A375) in vitro. In vivo experiments, exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO, human malignant melanoma A375 and human hepatoma graft in nude mice. This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice. These results are correlated with theGene delivery system targeting VEGF receptors relevant receptors (flt-1, flk-1/KDR) expression on the targeted cells and tissues.展开更多
Phospholipids have the characteristics of excellent biocompatibility and a especial amphiphilicity.These unique properties make phospholipids most appropriate to be employed as important pharmaceutical excipients and ...Phospholipids have the characteristics of excellent biocompatibility and a especial amphiphilicity.These unique properties make phospholipids most appropriate to be employed as important pharmaceutical excipients and they have a very wide range of applications in drug delivery systems.The aim of this review is to summarize phospholipids and some of their related applications in drug delivery systems,and highlight the relationship between the properties and applications,and the effect of the species of phospholipids on the efficiency of drug delivery.We refer to some relevant literatures,starting from the structures,main sources and properties of phospholipids to introduce their applications in drug delivery systems.The present article focuses on introducing five types of carriers based on phospholipids,including liposomes,intravenous lipid emulsions,micelles,drug-phospholipids complexes and cochleates.展开更多
基金financially supported by the National Natural Science Foundation of China(grant no.8217070298)Guangdong Basic and Applied Basic Research Foundation(grant no.2020A1515110770,2021A1515220011,2022A1515010335).
文摘Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
文摘Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. The delivery of therapeutic compounds to the target site is a major challenge in the treatment of many diseases. Objective: This study aims to evaluate activated charcoal nanoparticles as a drug delivery system for anticancer agents (Sorafenib and Doxorubicin) in Hepatocellular Cancer Stem Cells. Method: The percent efficiency of entrapment (% EE) of the doxorubicin and sorafenib entrapped onto the activated charcoal was obtained by determining the free doxorubicin and sorafenib concentration in the supernatant-prepared solutions. Then the characterizations of nanoparticles were formed by determination of the particle size distribution, zeta potential, and polydispersity index (PDI). The anticancer activity of activated Charcoal, Doxorubicin-ACNP, sorafenib-ACNP, free doxorubicin, and free sorafenib solutions was measured based on cell viability percentage in HepG2 cell lines (ATCC-CCL 75). In vitro RBC’s toxicity of Doxorubicin/sorafenib loaded charcoal was estimated by hemolysis percentage. Results: The synthesized Doxorubicin-ACNP and Sorafenib-ACNP were evaluated and their physiochemical properties were also examined. Essentially, the percent Efficiency of Entrapment (EE %) was found to be 87.5% and 82.66% for Doxorubicin-ACNP and Sorafenib-ACNP, respectively. The loading capacity was 34.78% and 24.31% for Doxorubicin-ACNP and Sorafenib-ACNP. Using the Dynamic Light scattering [DLS] for the determination of the hydrodynamic size and surface zeta potential, a narrow sample size distribution was obtained of (18, 68, and 190 nm for charcoal, 105, 255, and 712 nm for doxorubicin, and 91, 295, and 955 nm for sorafenib), respectively. A surface charge of −13.2, −15.6 and −17 was obtained for charcoal, doxorubicin/charcoal, and sorafenib/charcoal nanoparticles. The cytotoxic activity of Doxorubicin-ACNP and Sorafenib-ACNP was evaluated in-vitro against HepG2 cell lines and it was observed that Drug loaded ACNP improved anticancer activity when compared to Doxorubicin or Sorafenib alone. Moreover, testing the toxicity potential of DOX-ACNP and Sorafenib-ACNP showed a significant reduction in the hemolysis of red blood cells when compared to Doxorubicin and Sorafenib alone. Conclusion: In conclusion, it is notable to state that this study is regarded as the first to investigate the use of Activated charcoal for the loading of Doxorubicin and Sorafenib for further use in the arena of hepatocellular carcinoma. Doxorubicin-ACNP and Sorafenib-ACNP showed noteworthy anticancer activity along with a reduced potential of RBCs hemolysis rendering it as an efficacious carrier with a low toxicity potential.
文摘Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver’s metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting.Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis;nevertheless,the working mechanism of anti-fibrotic medications is not fully understood,and there is a need to design delivery systems that are well-understood and can aid in cirrhosis.Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery.As a result,the capability of nanoparticles in hepatic delivery was explored.Another approach is targeted drug delivery,which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells(HSCs).We have addressed numerous delivery strategies that target HSCs,which can eventually aid in fibrosis.Recently genetics have proved to be useful,and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted.To summarize,this review paper sheds light on themost recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
基金supported by Dalian Youth Science and Technology Star Project(2020RQ121)the National Science Fund for Distinguished Young Scholars of China(31925031)+1 种基金Doctoral Scientific Research Foundation of Liaoning Province(2020-BS-211)Liaoning Province Education Administration(J2020101)。
文摘Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescence in vitro and increases longevity in vivo,but has poor water solubility and limited bioavailability.In this study,a food-grade and senescent cell-targeted delivery system for fisetin was developed based on whey protein isolate-galactooligosaccharides(WPI-GOS)Maillard conjugate,which could recognize senescence associatedβ-galactosidase in senescent cells.The fisetin nanoparticles possessed a high encapsulation efficiency,excellent dispersibility in water,good storage stability and well biocompatibility.Moreover,they could effectively accumulate and retain in senescent cells with excellent senescent cell-targeting efficacy,and inhibit the oxidative stress-induced cellular senescence in vitro.Thus,this novel nanoparticle system based on WPI-GOS Maillard conjugate showed promise to deliver hydrophobic bioactive ingredients like fisetin to senescent cells to improve their bioavailability and anti-senescence effect.
文摘BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.
文摘Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells.To be excited,the development of ionizable drug delivery systems(IDDSs)has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019(COVID-19)in 2021.Compared with conventional cationic gene vectors,IDDSs can decrease the toxicity of carriers to cell membranes,and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures.Despite the progress,there remain necessary requirements for designing more efficient IDDSs for precise gene therapy.Herein,we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms.The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of plasmid DNA(pDNA)and four kinds of RNA.In particular,organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity.We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future,and indicate ideas for developing next generation gene vectors.
基金Supported by Science and Health Joint Medical Research Project of Chongqing,No.2022MSXM133Natural Science Foundation of Chongqing,No.CSTB2022NSCQ-MSX1522,No.CSTB2023NSCQ-MSX0246,No.CSTB2022NSCQ-MSX1271+1 种基金The First Batch of Key Disciplines on Public Health in Chongqing and ScienceHealth Joint Project of Dazu District Science and Technology Bureau,No.DZKJ,2022CCC1001.
文摘The complication of diabetes,which is known as diabetic foot ulcer(DFU),is a significant concern due to its association with high rates of disability and mortality.It not only severely affects patients’quality of life,but also imposes a substantial burden on the healthcare system.In spite of efforts made in clinical practice,treating DFU remains a challenging task.While mesenchymal stem cell(MSC)therapy has been extensively studied in treating DFU,the current efficacy of DFU healing using this method is still inadequate.However,in recent years,several MSCs-based drug delivery systems have emerged,which have shown to increase the efficacy of MSC therapy,especially in treating DFU.This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3401404)the National Natural Science Foundation of China(Grant Nos.32170935 and 31930066).
文摘Cancer immunotherapy,a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity,is currently an important clinical strategy for cancer treatment;however,tumors can develop drug resistance to immune surveillance,resulting in poor response rates and low therapeutic efficacy.In addition,changes in genes and signaling pathways in tumor cells prevent susceptibility to immunotherapeutic agents.Furthermore,tumors create an immunosuppressive microenvironment via immunosuppressive cells and secrete molecules that hinder immune cell and immune modulator infiltration or induce immune cell malfunction.To address these challenges,smart drug delivery systems(SDDSs)have been developed to overcome tumor cell resistance to immunomodulators,restore or boost immune cell activity,and magnify immune responses.To combat resistance to small molecules and monoclonal antibodies,SDDSs are used to co-deliver numerous therapeutic agents to tumor cells or immunosuppressive cells,thus increasing the drug concentration at the target site and improving efficacy.Herein,we discuss how SDDSs overcome drug resistance during cancer immunotherapy,with a focus on recent SDDS advances in thwarting drug resistance in immunotherapy by combining immunogenic cell death with immunotherapy and reversing the tumor immunosuppressive microenvironment.SDDSs that modulate the interferon signaling pathway and improve the efficacy of cell therapies are also presented.Finally,we discuss potential future SDDS perspectives in overcoming drug resistance in cancer immunotherapy.We believe that this review will contribute to the rational design of SDDSs and development of novel techniques to overcome immunotherapy resistance.
基金supported by National Natural Science Foundation of China(Grant No.82160430)Natural Science Foundation of Guangxi(Grant No.2020GXNSFAA159134 and 2019GXNSFAA185060)+1 种基金Guangxi Science and Technology Base and Talent Special Project(Grant No.GuikeAD19254003 and GuikeAD21075002)Nanning Qingxiu District Science and Technology Major Special Project(Grant No.2020013).
文摘Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy.
文摘Curcumin is a natural compound with a diketone structure,which can control the growth,metastasis,recurrence,neovascularization,invasion,and drug resistance of gastrointestinal tumors by inhibiting nuclear factorκB,overexpression of tumor cells,vascular endothelial growth factor,etc.However,due to the low bioavailability of curcumin formulation,it did not fully exert its pharmacological effects,and its application and development in the treatment of various malignant tumors are still limited.This review summarizes the research on drug delivery systems of curcumin combating digestive tract tumors in order to further reduce the toxic side effects of curcumin-containing drugs and fully exert their pharmacological activities,and improve their bioavailability and clinical value.
文摘A novel light responsive nanosphere was constructed,and it was used as a drug carrier to investigate the loading and release properties of the Quercetin(QU).In this paper,mesoporous silica nanoparticles(MSN)were used as a substrate,and 3-aminopropyl triethyoxysilane was used as a surface modification agent to introduce—NH_(2),and the azobenzene-4,4’-dicarboxylic acid(AZO)was used as light responsive agent to introduce the group of—N=N—,and thenβ-cyclodextrin(β-CD)was combined with AZO through host-guest interaction to construct light responsive nanoparticles(MSN@β-CD).The structure and properties of the carrier were analyzed by FTIR,BET,XPS,TGA,XRD,SEM and TEM.In vitro drug release studies showed the release rate of QU@MSN@β-CD(dark)was 12.19%within 72 h,but the release rate of QU@MSN@β-CD(light 10 min)was 26.09%,exhibiting a light-responsive property.The CCK8 tests demonstrated that MSN@β-CD could significantly decrease the toxicity of QU.Therefore,the controllable light-responsive drug delivery system has great application prospects.
基金the financial support of Isfahan University of Medical Sciences by grant No.#199180.
文摘The world has been dealing with a novel severe acute respiratory syndrome(SARS-CoV-2)since the end of 2019,which threatens the lives of many peopleworldwide.COVID-19 causes respiratory infection with different symptoms,from sneezing and coughing to pneumonia and sometimes gastric symptoms.Researchers worldwide are actively developing novel drug delivery systems(DDSs),such as stimuli-responsive DDSs.The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating“smart”DDS that can effectively control dosage,sustained release,individual variations,and targeted delivery.To conduct a comprehensive literature survey for this article,the terms“Stimuli-responsive”,“COVID-19”and“Drug delivery”were searched on databases/search engines like“Google Scholar”,“NCBI”,“PubMed”,and“Science Direct”.Many different types of DDSs have been proposed,including those responsive to various exogenous(light,heat,ultrasound andmagnetic field)or endogenous(microenvironmental changes in pH,ROS and enzymes)stimuli.Despite significant progress in DDS research,several challenging issues must be addressed to fill the gaps in the literature.Therefore,this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
基金Hainan Innovation Team Project of Hainan(820CXTD448)Hainan Province Key R&D Program International Science and Technology Cooperation Project(GHYF2022011)+8 种基金Key R&D Projects in Hainan ProvincZDYF2020223Hainan Provincial Major Science and Technology Project(ZDKJ2021036)Hainan Provincial Natural Science Foundation of High-level Talent Project 2019RC212Chinese Academy of Medical Sciences Medical and Health Science and Technology Innovation Engineering Project(2019-12M-5-023)Major Science and Technology Project of Hainan Province(ZDKJ2021039,ZDKJ202004)Key Topics of Hainan Medical College's Educational and Scientific Research Projects(HYZD202111)National Natural Science Foundation of China(81860001,82011530049 and 82160012)Open Project of the Key Laboratory of Tropical Disease Prevention and Control of the NHC(2021NHCTDCKFKT21008)Hainan Provincial Clinical Medical Center Construction Project Fund。
文摘With the influence of many factors such as the aging of the population,the younger smokers,and the serious air pollution,the incidence of chronic respiratory diseases is increasing year by year.In the treatment of respiratory diseases,clinical intervention is still mainly based on drug control of pulmonary symptoms.However,systemic drugs have disadvantages such as many adverse reactions and severe systemic side effects.In recent years,the research and development of local drug delivery systems for the respiratory tract has brought new changes to the treatment of respiratory diseases.Locally delivered drugs can directly act on the airways and have the characteristics of fast onset,good curative effect and small side effects.It is a simple,efficient and safe treatment method,which has a very significant effect,and has become a hot topic of current research and promotion.This paper briefly reviews the development track and latest research progress of respiratory local drug delivery systems at home and abroad,in order to provide reference for clinical workers in drug selection and application.
文摘The data included in this analysis were from two clinical studies (Study A and Study B), which evaluated JUUL electronic nicotine delivery systems (ENDS) against combustible cigarettes. In both studies, biomarkers of exposure including nicotine equivalents, NNAL, 3-HPMA, MHBMA, S-PMA and COHb were measured. Coefficients of variation (CV) of the biomarkers were calculated and compared. Pearson correlation analysis was used to examine the correlation between the biomarkers. Seven out of the nine biomarkers of exposure in Study A were highly variable (CV > 30%). Higher variability was observed in NNAL, MHBMA and S-PMA than in other biomarkers. After adult cigarette smokers switched from combustible cigarettes to JUUL ENDS, the correlation between nicotine equivalents and other biomarkers became weaker. A similar trend was observed between NNAL and other biomarkers. In Study B, the participants in the 5% ENDS group had higher nicotine equivalent levels than those in the 3% ENDS group. The higher nicotine levels did not result in a substantial increase in the levels of other biomarkers (except 1-OHP). The correlations between nicotine equivalents and 3-HPMA, MHBMA, S-PMA, COHb, HMPMA, and 1-OHP were weak in both the 5% and 3% ENDS groups.
基金funded by Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)Department of Education of Liaoning Province(LJKZ0918)National College Students’Innovation and Entrepreneurship Training Program(202210163013).
文摘Polyphenols are a class of chemical components that are beneficial to human health.Polyphenol compounds provide advanced biomedical applications due to their antioxidant and anti-inflammatory activity.They can also play a role in reducing the risk of various chronic diseases.However,most polyphenols are unstable compounds with low absorption and poor bioavailability which greatly limited their applications.Therefore,the delivery of polyphenols to specific parts of the body has become a therapeutic necessity.In this study,the research of polyphenol delivery systems such as microspheres,nanoparticles,liposomes and gels were mainly summarized.The action mechanism of polyphenols to intestinal microbiota,tumor cells,the brain,pancreas,and liver was analyzed.
基金supported by the National Natural Sciences Foundation of China(No.71874058 and No.72174068).
文摘With the deepening of China’s health-care reform,an integrated delivery system has gradually emerged with the function of improving the efficiency of the health-care delivery system.For China’s integrated delivery system,a medical consortium plays an important role in integrating public hospitals and primary care facilities.The first medical consortium policy issued after the COVID-19 pandemic apparently placed hope on accelerating the implementation of a medical consortium and tiered health-care delivery system.This paper illustrates the possible future pathway of China’s medical consortium through retrospection of the 10-year process,changes of the series of policies,and characteristics of the policy issued in 2020.We considered that a fully integrated medical consortium would be a major phenomenon in China's medical industry,which would lead to the formation of a dualistic care pattern in China.
文摘By analyzing the observed phenomena and the data collected in the study, a multi-compartment linear circulation model for targeting drug delivery system was developed and the function formulas of the drug concentration-time in blood and target organ by computing were figured out. The drug concentration-time curve for target organ can be plotted with reference to the data of drug concentration in blood according to the model. The pharmacokinetic parameters of the drug in target organ could also be obtained. The practicability of the model was further checked by the curves of drug concentration-time in blood and target organ(liver) of liver-targeting nanoparticles in animal tests. Based on the liver drug concentration-time curves calculated by the function formula of the drug in target organ, the pharmacokinetic behavior of the drug in target organ(liver) was analyzed by statistical moment, and its pharmacokinetic parameters in liver were obtained. It is suggested that the (relative targeting index( can be used for quantitative evaluation of the targeting drug delivery systems.
文摘Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors. GV1, GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex. Using pSV2-β-galactosidase as a reporter gene, it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) andhuman malignant melanoma cell lines (A375) in vitro. In vivo experiments, exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO, human malignant melanoma A375 and human hepatoma graft in nude mice. This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice. These results are correlated with theGene delivery system targeting VEGF receptors relevant receptors (flt-1, flk-1/KDR) expression on the targeted cells and tissues.
文摘Phospholipids have the characteristics of excellent biocompatibility and a especial amphiphilicity.These unique properties make phospholipids most appropriate to be employed as important pharmaceutical excipients and they have a very wide range of applications in drug delivery systems.The aim of this review is to summarize phospholipids and some of their related applications in drug delivery systems,and highlight the relationship between the properties and applications,and the effect of the species of phospholipids on the efficiency of drug delivery.We refer to some relevant literatures,starting from the structures,main sources and properties of phospholipids to introduce their applications in drug delivery systems.The present article focuses on introducing five types of carriers based on phospholipids,including liposomes,intravenous lipid emulsions,micelles,drug-phospholipids complexes and cochleates.