The work presents a demand side response(DSR) model,which assists electricity consumers to proactively mitigate peak demand on electrical networks in Eastern and Southern Australia. A low-cost technical arrangement,...The work presents a demand side response(DSR) model,which assists electricity consumers to proactively mitigate peak demand on electrical networks in Eastern and Southern Australia. A low-cost technical arrangement,which is made of Internet relay,a router,solid state switches,and the suitable software,is used to control electricity demand at user's premises. The model allows shifting loads from peak to off-peak periods in order to reduce peaks,which helps to moderate the national electrical demand. The model can be concurrently used to accommodate the utilization of renewable energy sources and the introduction of electric vehicles. The results present possible savings on the electrical energy consumption in the designated regions.展开更多
Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large...Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large scale development of electric vehicle(EV)will also have a significant impact on power grid in general and load characteristics in particular.This paper aims to develop a controlled EV charging strategy to optimize the peak-valley difference of the grid when considering the regional wind and PV power outputs.The probabilistic model of wind and PV power outputs is developed.Based on the probabilistic model,the method of assessing the peak-valley difference of the stochastic load curve is put forward,and a two-stage peak-valley price model is built for controlled EV charging.On this basis,an optimization model is built,in which genetic algorithms are used to determine the start and end time of the valley price,as well as the peak-valley price.Finally,the effectiveness and rationality of the method are proved by the calculation result of the example.展开更多
In order to currently motivate a wide range of various interactions between power network operators and electricity customers,residential load forecasting plays an increasingly important role in demand side response(D...In order to currently motivate a wide range of various interactions between power network operators and electricity customers,residential load forecasting plays an increasingly important role in demand side response(DSR).Due to high volatility and uncertainty of residential load,it is significantly challenging to forecast it precisely.Thus,this paper presents a short-term individual residential load forecasting method based on a combination of deep learning and k-means clustering,which is capable of effectively extracting the similarity of residential load and performing residential load forecasting accurately at the individual level.It first makes full use of k-means clustering to extract similarity among residential load and then employs deep learning to extract complicated patterns of residential load.The presented method is tested and validated on a real-life Irish residential load dataset,and the experimental results suggest that it can achieve a much higher prediction accuracy,in comparison with a published benchmark method.展开更多
基金supported by Directorate General of Higher Education Department of National Education, the Indonesian Government and the State Polytechnic of Ujung Pandang, Makassar, Indonesia, and the Australia Power Institute (API)
文摘The work presents a demand side response(DSR) model,which assists electricity consumers to proactively mitigate peak demand on electrical networks in Eastern and Southern Australia. A low-cost technical arrangement,which is made of Internet relay,a router,solid state switches,and the suitable software,is used to control electricity demand at user's premises. The model allows shifting loads from peak to off-peak periods in order to reduce peaks,which helps to moderate the national electrical demand. The model can be concurrently used to accommodate the utilization of renewable energy sources and the introduction of electric vehicles. The results present possible savings on the electrical energy consumption in the designated regions.
基金This work is supported by National Natural Science Foundation of China(No.51477116)the Special Founding for"Thousands Plan"of State Grid Corporation of China(No.XT71-12-028).
文摘Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large scale development of electric vehicle(EV)will also have a significant impact on power grid in general and load characteristics in particular.This paper aims to develop a controlled EV charging strategy to optimize the peak-valley difference of the grid when considering the regional wind and PV power outputs.The probabilistic model of wind and PV power outputs is developed.Based on the probabilistic model,the method of assessing the peak-valley difference of the stochastic load curve is put forward,and a two-stage peak-valley price model is built for controlled EV charging.On this basis,an optimization model is built,in which genetic algorithms are used to determine the start and end time of the valley price,as well as the peak-valley price.Finally,the effectiveness and rationality of the method are proved by the calculation result of the example.
基金supported by the Science and Technology Program of State Grid Corporation of China(Data Mining Technology of Potential High-Value Industrial Users for Data Operations,No.5700-202055267A-0-0-00)。
文摘In order to currently motivate a wide range of various interactions between power network operators and electricity customers,residential load forecasting plays an increasingly important role in demand side response(DSR).Due to high volatility and uncertainty of residential load,it is significantly challenging to forecast it precisely.Thus,this paper presents a short-term individual residential load forecasting method based on a combination of deep learning and k-means clustering,which is capable of effectively extracting the similarity of residential load and performing residential load forecasting accurately at the individual level.It first makes full use of k-means clustering to extract similarity among residential load and then employs deep learning to extract complicated patterns of residential load.The presented method is tested and validated on a real-life Irish residential load dataset,and the experimental results suggest that it can achieve a much higher prediction accuracy,in comparison with a published benchmark method.