By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densifica...By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densification mechanism for powder warm compaction, and the plastical deformation of particles plays an important role in offering accommodating deformation for particle rearrangement and densifying powder compact at the final stage of pressing.In order to attain density gain as high as possible during warm compaction, six rules for designing warm compacting powder mixtures were proposed in detail.展开更多
A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic gla...A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.展开更多
The grain growth kinetics and densification mechanism of(TiZrHfVNbTa)C high-entropy carbide ceramic are investigated in this work.A single phase carbide with a rock-salt structure is formed until 2300°C,below whi...The grain growth kinetics and densification mechanism of(TiZrHfVNbTa)C high-entropy carbide ceramic are investigated in this work.A single phase carbide with a rock-salt structure is formed until 2300°C,below which an apparent aggregation of V,Zr and Hf exists.It is associated with the slow diffusion rate of V element as well as the relatively poor solubility of VC in HfC(as well as ZrC).The grain growth mechanism gradually changes from surface diffusion to volume diffusion and then grain boundary diffusion with increasing sintering temperature.This is attributed to the variation of activation energy of grain growth.The densification mechanism is principally dominated by the mass transport through lattice diffusion with the activation energy of 839±53 k J/mol.Through the design of two-step sintering,it is verified that the solid solution formation can effectively promote the densification process.展开更多
Dense B;C material was fabricated using spark plasma sintering(SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of sample...Dense B;C material was fabricated using spark plasma sintering(SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of samples were investigated and the model predictions were confirmed by SEM and TEM experimental observations. Results show that SPSed B;C exhibits two sintering periods: a densification period(1800-2000 °C) and a grain growth period(2100-2200 °C). Based on steady-state creep model, densification proceeds by grain boundary sliding and then dislocation-climb-controlled mechanism. Grain growth mechanism is controlled by grain boundary diffusion at 2100 °C,and then governed by volume or liquid-phase diffusion at 2200 °C.展开更多
The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initia...The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initial conditions such as friction factor, ratio between height and diameter and relative density. The fracture limit criteria" for powder cold-forging upsetting and the limit strain curve were achieved. The effect of friction facto,, ratlt, between height and diameter and relative density on fracture strain limitation was emphatically analyzed. The limit process parameter curves for the deformation of upsetting were also confirmed. Laws of deformation, densification and density distribution for closed-die forging of powder perform during cold-forging were further analyzed and discussed with the help of experimental phase analysis. As a result, this experiment established theoretical foundations for the design of preform and die as well as optimization of technological process parameters.展开更多
FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of th...FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.展开更多
The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested...The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested a simple but advanced solid-state method that ensures both uniform transition metal distribution and single-crystalline morphology for Ni-rich cathode synthesis without sophisticated coprecipitation.Pelletization-assisted mechanical densification(PAMD)process on solid-state precursor mixture enables the dynamic mass transfer through the increased solid-solid contact area which facilitates the grain growth during sintering process,readily forming micro-sized single-crystalline particle.Furthermore,the improved chemical reactivity by a combination of capillary effect and vacancyassisted diffusion provides homogeneous element distribution within each primary particle.As a result,single-crystalline Ni-rich cathode with PAMD process has eliminated a potential evolution of intergranular cracking,thus achieving superior energy retention capability of 85%over 150 cycles compared to polycrystalline Ni-rich particle even after high-pressure calendering process(corresponding to electrode density of~3.6 g cm^(-3))and high cut-off voltage cycling.This work provides a concrete perspective on developing facile synthetic route of micron-sized single-crystalline Ni-rich cathode materials for high energy density lithium-ion batteries(LIBs).展开更多
To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted...To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted and compared by using finite element method(FEM).Constitutive relations of porous compacts during HIP process were derived based on the yield criterion of porous metal materials.Thermo-mechanical coupling calculations were carried out by the MSC.Marc.Densification mechanisms were studied through evolutions of relative density,equivalent plastic strain and equivalent viscoplastic strain rate for compacts.The simulation results were also compared with experimental data.The results show that the densification rate and final density of compacts increase dramatically with the increase in the applied pressure level when it is below 100 MPa during HIP process,and the creep for compacts evolves into steady stage with the improvement of density.展开更多
The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Stee...The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.展开更多
ZrB_(2)-SiBCN ceramics with ZrO_(2) additive are hot-pressed under a constant applied pressure.The densification behavior of the composites is studied in a view of creep deformation by means of the Bernard-Granger and...ZrB_(2)-SiBCN ceramics with ZrO_(2) additive are hot-pressed under a constant applied pressure.The densification behavior of the composites is studied in a view of creep deformation by means of the Bernard-Granger and Guizard model.With determination of the stress exponent(n)and the apparent activation energy(Q_(d)),the specific deformation mechanisms controlling densification are supposed.Within lower temperature ranges of 1300-1400℃,the operative mechanism is considered to be grain boundary sliding accommodated by atom diffusion of the polymer-derived SiBCN(n=1,Q_(d)=123±5 kJ/mol)and by viscous flow of the amorphous SiBCN(n=2,Qd=249±5 kJ/mol).At higher temperatures,the controlling mechanism transforms to lattice or intra-granular diffusion creep(n=3-5)due to gradual consumption of the amorphous phase.It is suggested that diffusion of oxygen ions inside ZrO_(2) into the amorphous SiBCN decreases the viscosity,modifies the fluidity,and contributes to the grain boundary mobility.展开更多
Sintering kinetics have been found to be effective in judging the evolution of ceramics.By using magnesium oxide-partially stabilized zirconia(Mg-PSZ)powder prepared by co-precipitation as raw materials,the evolution ...Sintering kinetics have been found to be effective in judging the evolution of ceramics.By using magnesium oxide-partially stabilized zirconia(Mg-PSZ)powder prepared by co-precipitation as raw materials,the evolution of densification and grain growth for Mg-PSZ ceramics were investigated.The results indicated that the densification of samples was mainly controlled by grain boundary diffusion in intermediate sintering stage.During the sintering process,the grain growth mechanisms included normal grain growth,abnormal grain growth and solid solution drag-controlled grain growth.Interestingly,the apparent activation energy for grain growth of Mg-PSZ ceramics is lower than that of ZrO_(2)–Y_(2)O_(3)ceramics in the solid solution drag-controlled grain grow process,which will cause grain to grow easily.The sintering kinetics and microstructure of Mg-PSZ ceramics were studied,and the kinetic equation of grain growth at different temperatures was established.The results show that the strength difference between Mg-PSZ and yttrium oxide-stabilized zirconia is closely related to the easy grain growth of Mg-PSZ ceramics.展开更多
Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration ti...Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration time, frequency, amplitude, vibration strength, container size, and the aspect ratio and spheric- ity of the particle on the packing density were analyzed and discussed. For each initial packing density with a certain aspect ratio, operating parameters were optimized to achieve much denser packing. The results indicate that the packing density initially increases with vibration time and then remains con- stant. The effects of vibration frequency and amplitude on the packing densification have similar trends, i.e. the packing density first increases with the vibration frequency or amplitude to a high value and then decreases; too large or small frequency or amplitude does not enhance densification. Increasing the container size can reduce container wall effects and help achieve a high packing density. Varying the particle aspect ratio and sphericity can lead to different dense random packing structures. Overall, based on results of the examined systems, the highest random packing density obtained in an infinite sized container can reach 0.73, which agrees well with corresponding numerical and analytical results in the literature.展开更多
文摘By phenomenological analysis of warm compaction, it is found that, compared with the contribution of particle plastical deformation to densification of powder compact,the particle rearrangement is a dominant densification mechanism for powder warm compaction, and the plastical deformation of particles plays an important role in offering accommodating deformation for particle rearrangement and densifying powder compact at the final stage of pressing.In order to attain density gain as high as possible during warm compaction, six rules for designing warm compacting powder mixtures were proposed in detail.
基金financially supported by the National Natural Science Foundation of China(Nos.52371154,52090043,52175371 and 52271147)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012158)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Researchthe Fundamental Research Funds for the Central Universities(No.2021GCRC003)。
文摘A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.
基金financially supported by the National Natural Science Foundation of China(Nos.51972081,52032002 and 51872061)Heilongjiang Touyan Team Programthe Foundation of Science and Technology on Particle Transport and Separation Laboratory。
文摘The grain growth kinetics and densification mechanism of(TiZrHfVNbTa)C high-entropy carbide ceramic are investigated in this work.A single phase carbide with a rock-salt structure is formed until 2300°C,below which an apparent aggregation of V,Zr and Hf exists.It is associated with the slow diffusion rate of V element as well as the relatively poor solubility of VC in HfC(as well as ZrC).The grain growth mechanism gradually changes from surface diffusion to volume diffusion and then grain boundary diffusion with increasing sintering temperature.This is attributed to the variation of activation energy of grain growth.The densification mechanism is principally dominated by the mass transport through lattice diffusion with the activation energy of 839±53 k J/mol.Through the design of two-step sintering,it is verified that the solid solution formation can effectively promote the densification process.
基金the financial supports from the National Natural Science Foundation of China (No. 51874369)Hunan Provincial Natural Science Foundation, China (No. 2021JJ30856)+1 种基金the China Scholarship Council for financial supports (No. CSC201906370123)the Fundamental Research Funds for the Central Universities of Central South University, China (No. 2020zzts084)。
文摘Dense B;C material was fabricated using spark plasma sintering(SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of samples were investigated and the model predictions were confirmed by SEM and TEM experimental observations. Results show that SPSed B;C exhibits two sintering periods: a densification period(1800-2000 °C) and a grain growth period(2100-2200 °C). Based on steady-state creep model, densification proceeds by grain boundary sliding and then dislocation-climb-controlled mechanism. Grain growth mechanism is controlled by grain boundary diffusion at 2100 °C,and then governed by volume or liquid-phase diffusion at 2200 °C.
基金Supported by the National Natural Science Foundation of China (No.50175086)
文摘The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initial conditions such as friction factor, ratio between height and diameter and relative density. The fracture limit criteria" for powder cold-forging upsetting and the limit strain curve were achieved. The effect of friction facto,, ratlt, between height and diameter and relative density on fracture strain limitation was emphatically analyzed. The limit process parameter curves for the deformation of upsetting were also confirmed. Laws of deformation, densification and density distribution for closed-die forging of powder perform during cold-forging were further analyzed and discussed with the help of experimental phase analysis. As a result, this experiment established theoretical foundations for the design of preform and die as well as optimization of technological process parameters.
基金This work was supported by Hunan Provincial Natural Science Foundation.
文摘FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)(2021R1A2C1095408)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2022R1A6A1A03051158)。
文摘The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested a simple but advanced solid-state method that ensures both uniform transition metal distribution and single-crystalline morphology for Ni-rich cathode synthesis without sophisticated coprecipitation.Pelletization-assisted mechanical densification(PAMD)process on solid-state precursor mixture enables the dynamic mass transfer through the increased solid-solid contact area which facilitates the grain growth during sintering process,readily forming micro-sized single-crystalline particle.Furthermore,the improved chemical reactivity by a combination of capillary effect and vacancyassisted diffusion provides homogeneous element distribution within each primary particle.As a result,single-crystalline Ni-rich cathode with PAMD process has eliminated a potential evolution of intergranular cracking,thus achieving superior energy retention capability of 85%over 150 cycles compared to polycrystalline Ni-rich particle even after high-pressure calendering process(corresponding to electrode density of~3.6 g cm^(-3))and high cut-off voltage cycling.This work provides a concrete perspective on developing facile synthetic route of micron-sized single-crystalline Ni-rich cathode materials for high energy density lithium-ion batteries(LIBs).
基金Project(2007AA03Z115) supported by the National High Technology Research and Development Program of ChinaProject(2009ZX04005-041-03) supported by the National Science and Technology Major Program of ChinaProject(2010MS046) supported by the Independent Fund of Huazhong University of Science and Technology,China
文摘To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted and compared by using finite element method(FEM).Constitutive relations of porous compacts during HIP process were derived based on the yield criterion of porous metal materials.Thermo-mechanical coupling calculations were carried out by the MSC.Marc.Densification mechanisms were studied through evolutions of relative density,equivalent plastic strain and equivalent viscoplastic strain rate for compacts.The simulation results were also compared with experimental data.The results show that the densification rate and final density of compacts increase dramatically with the increase in the applied pressure level when it is below 100 MPa during HIP process,and the creep for compacts evolves into steady stage with the improvement of density.
文摘The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.
基金Financial support from the National Natural Science Foundation of China(Grant No.51272009)is sincerely acknowledged.
文摘ZrB_(2)-SiBCN ceramics with ZrO_(2) additive are hot-pressed under a constant applied pressure.The densification behavior of the composites is studied in a view of creep deformation by means of the Bernard-Granger and Guizard model.With determination of the stress exponent(n)and the apparent activation energy(Q_(d)),the specific deformation mechanisms controlling densification are supposed.Within lower temperature ranges of 1300-1400℃,the operative mechanism is considered to be grain boundary sliding accommodated by atom diffusion of the polymer-derived SiBCN(n=1,Q_(d)=123±5 kJ/mol)and by viscous flow of the amorphous SiBCN(n=2,Qd=249±5 kJ/mol).At higher temperatures,the controlling mechanism transforms to lattice or intra-granular diffusion creep(n=3-5)due to gradual consumption of the amorphous phase.It is suggested that diffusion of oxygen ions inside ZrO_(2) into the amorphous SiBCN decreases the viscosity,modifies the fluidity,and contributes to the grain boundary mobility.
基金The work has been supported by the National Key Research and Development Program of China(No.2017YFB0310401)National Natural Science Foundation of China(Nos.U1908227 and U20A20239).
文摘Sintering kinetics have been found to be effective in judging the evolution of ceramics.By using magnesium oxide-partially stabilized zirconia(Mg-PSZ)powder prepared by co-precipitation as raw materials,the evolution of densification and grain growth for Mg-PSZ ceramics were investigated.The results indicated that the densification of samples was mainly controlled by grain boundary diffusion in intermediate sintering stage.During the sintering process,the grain growth mechanisms included normal grain growth,abnormal grain growth and solid solution drag-controlled grain growth.Interestingly,the apparent activation energy for grain growth of Mg-PSZ ceramics is lower than that of ZrO_(2)–Y_(2)O_(3)ceramics in the solid solution drag-controlled grain grow process,which will cause grain to grow easily.The sintering kinetics and microstructure of Mg-PSZ ceramics were studied,and the kinetic equation of grain growth at different temperatures was established.The results show that the strength difference between Mg-PSZ and yttrium oxide-stabilized zirconia is closely related to the easy grain growth of Mg-PSZ ceramics.
基金We are grateful to the financial support of National Natural Science Foundation of China (No. 51374070) and Fundamental Research Funds for the Central Universities of China (N120202001, N130102001).
文摘Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration time, frequency, amplitude, vibration strength, container size, and the aspect ratio and spheric- ity of the particle on the packing density were analyzed and discussed. For each initial packing density with a certain aspect ratio, operating parameters were optimized to achieve much denser packing. The results indicate that the packing density initially increases with vibration time and then remains con- stant. The effects of vibration frequency and amplitude on the packing densification have similar trends, i.e. the packing density first increases with the vibration frequency or amplitude to a high value and then decreases; too large or small frequency or amplitude does not enhance densification. Increasing the container size can reduce container wall effects and help achieve a high packing density. Varying the particle aspect ratio and sphericity can lead to different dense random packing structures. Overall, based on results of the examined systems, the highest random packing density obtained in an infinite sized container can reach 0.73, which agrees well with corresponding numerical and analytical results in the literature.