期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Density Dependence of Tunnel Fire Resistance for Aerogel-Cement Mortar Coatings 被引量:2
1
作者 ZHU Pinghua JIA Zhi +3 位作者 WANG Xinjie CHEN Chunhong LIU Hui XU Xiaoyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期598-604,共7页
Five kinds of mortars with density grades of 500, 600, 700, 800, and 900 kg/m3 were prepared. Their thermal conductivity and compressive strength were measured, and the morphological changes before and after simulated... Five kinds of mortars with density grades of 500, 600, 700, 800, and 900 kg/m3 were prepared. Their thermal conductivity and compressive strength were measured, and the morphological changes before and after simulated tunnel fire were observed. To investigate the fire resistance, the interfacial temperature of a 30 mm thick aerogel-cement mortar and self-compacting concrete (SCC) in a simulated tunnel fire with the maximum temperature of 1100 ℃ for 2.5 h was tested and recorded. The results showed that as the density decreased, both compressive strength and thermal conductivity of the aerogel-cement mortar exhibited an exponential decrease. The effective fire resistance time of the mortar with 500, 600, 700, 800, and 900 kg/m^3 for protecting SCC from tunnel fire were 97 min, 114 min, 144 min, > 150 min, 136 min, respectively. 700 - 800 kg/m3 was the optimum density for engineering application of tunnel concrete fireproof coating. 展开更多
关键词 aerogel-cement mortar coating density grades compressive strength thermal conductivity simulated tunnel fire resistance
下载PDF
Computational design and simulation of the Mg-Cu system gradeddensity impactors for complex loading experiments
2
作者 BAI JingSong TANG Mi +5 位作者 LUO GuoQiang YU JiDong YUAN Shuai DAI ChengDa WU Qiang TAN Hua 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第9期1710-1716,共7页
Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixture... Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixtures of metal powders in the Mg-Cu system are cast into a series of 17 and 25 uniform compositions ranging from 100% Mg to 100% Cu. The graded den- sity impactors are launched to the stationary 10 Ixm aluminum film and 12 mm LiF window targets by a two-stage light-gas gun in the National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, and the resulting wave profiles are measured with the DISAR system. Hydrodynamic simulation results are perfectly consistent with the experiments. Our work in this paper will set up a foundation for further research of controllable loading/releasing routes and rate experiments in the future. 展开更多
关键词 complex loading graded density impactor Mg-Cu system simulations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部