The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geolog...The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geological structures and hydrocarbon enrichment of the depressions in the Bohai Bay Basin. Based on the Paleogene strata distribution and the length to width ratio of different depressions, their geological structures are divided into three types in plan-view: open(length/width 〈 2), narrow(length/width 〉 4) and transitional types(length/width 2-4). In cross section, the geological structures can be divided into dustpan I, dustpan II and double-faulted types. Based on tectonic evolution and sedimentary characteristics, the depressions are classified into early-formed, inherited and late-formed categories. Generally, narrow depressions are mainly located in the northeast and southwest of the Bohai Bay Basin, while open depressions are dominantly distributed in the central area of the basin; late-formed depressions are mainly around the Bohai sea area, and early-formed depressions are mostly located in the periphery of the basin. Geological structures of the depressions control the formation of the source, reservoir and cap rocks as well as hydrocarbon accumulation setting, and further influence the pay zones and oil-bearing sequence. In detail, dustpan II and doublefaulted depressions mainly have A-type sags, which often possess better hydrocarbon generation conditions than dustpan I ones; hydrocarbons in open dustpan II depressions tend to accumulate in the central uplift areas or buried hill, while those in narrow dustpan I depressions always accumulate in gentle slope belts. The oil-bearing sequence for different evolutional depressions corresponds well with the sedimentary strata of the main development stages of depressions. In early-formed depressions, hydrocarbons are mainly enriched in deeply buried reservoirs, while in late-formed depressions hydrocarbons are abundant in the relatively shallow traps. In summary, most inherited and late-formed dustpan II depressions are enriched in hydrocarbons due to their extensive source rocks and good source-reservoir-seal assemblages, whereas dustpan I and early-formed depressions are relatively poor in hydrocarbons.展开更多
Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin struct...Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea.展开更多
Refering to geological evidences and recent Lincheng-Julu deep seismic reflection profile in the west-central part of North China Basin, it is concluded preliminarily that a low angle detachment structure may exist in...Refering to geological evidences and recent Lincheng-Julu deep seismic reflection profile in the west-central part of North China Basin, it is concluded preliminarily that a low angle detachment structure may exist in the central part of North China depression. Numerical method is used to simulate the influence of hot mantle intrusive bodies to Cenozoic basin tectonic movements. Numerical simulations show that,① The intrusion of hot mantle material has led to an extensional stress state in the upper crust in central North China depression. As time increasing, the extensional stress state changed slightly in the upper crust and was in keeping with the normal faulting tectonics in the upper crust in depression area. ② In Cenozoic era, under the effects of magmatic intrusion and the resistance of Taihang Mountain, the weak zone produced by the Mesozoic thrust faulting would become a detachment structure.③ With the elapse of time, the horizontal compressive stress gradually concentrated in the median crust, and the concentration of stress may generate strike-slip earthquakes in the median crust above the intrusive body.展开更多
基金granted by the National Natural Science Foundation(Grant No.41372132)Important National Science&Technology Specific Projects(Grant No.2011ZX05006-003)
文摘The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geological structures and hydrocarbon enrichment of the depressions in the Bohai Bay Basin. Based on the Paleogene strata distribution and the length to width ratio of different depressions, their geological structures are divided into three types in plan-view: open(length/width 〈 2), narrow(length/width 〉 4) and transitional types(length/width 2-4). In cross section, the geological structures can be divided into dustpan I, dustpan II and double-faulted types. Based on tectonic evolution and sedimentary characteristics, the depressions are classified into early-formed, inherited and late-formed categories. Generally, narrow depressions are mainly located in the northeast and southwest of the Bohai Bay Basin, while open depressions are dominantly distributed in the central area of the basin; late-formed depressions are mainly around the Bohai sea area, and early-formed depressions are mostly located in the periphery of the basin. Geological structures of the depressions control the formation of the source, reservoir and cap rocks as well as hydrocarbon accumulation setting, and further influence the pay zones and oil-bearing sequence. In detail, dustpan II and doublefaulted depressions mainly have A-type sags, which often possess better hydrocarbon generation conditions than dustpan I ones; hydrocarbons in open dustpan II depressions tend to accumulate in the central uplift areas or buried hill, while those in narrow dustpan I depressions always accumulate in gentle slope belts. The oil-bearing sequence for different evolutional depressions corresponds well with the sedimentary strata of the main development stages of depressions. In early-formed depressions, hydrocarbons are mainly enriched in deeply buried reservoirs, while in late-formed depressions hydrocarbons are abundant in the relatively shallow traps. In summary, most inherited and late-formed dustpan II depressions are enriched in hydrocarbons due to their extensive source rocks and good source-reservoir-seal assemblages, whereas dustpan I and early-formed depressions are relatively poor in hydrocarbons.
基金Supported by the China National Science and Technology Major Project(2016ZX05026-003,2011ZX05025-003)Science and Technology Project of CNOOC Limited(YXKY-2012-SHENHAI-01)CNOOC-KJ 135 ZDXM 37 SZ 01 SHENHAI。
文摘Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea.
文摘Refering to geological evidences and recent Lincheng-Julu deep seismic reflection profile in the west-central part of North China Basin, it is concluded preliminarily that a low angle detachment structure may exist in the central part of North China depression. Numerical method is used to simulate the influence of hot mantle intrusive bodies to Cenozoic basin tectonic movements. Numerical simulations show that,① The intrusion of hot mantle material has led to an extensional stress state in the upper crust in central North China depression. As time increasing, the extensional stress state changed slightly in the upper crust and was in keeping with the normal faulting tectonics in the upper crust in depression area. ② In Cenozoic era, under the effects of magmatic intrusion and the resistance of Taihang Mountain, the weak zone produced by the Mesozoic thrust faulting would become a detachment structure.③ With the elapse of time, the horizontal compressive stress gradually concentrated in the median crust, and the concentration of stress may generate strike-slip earthquakes in the median crust above the intrusive body.