Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed...Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.展开更多
深海抗风浪网箱养殖区别于传统近海网箱、围栏等养殖方式,适合发展高经济价值的鱼类养殖,现已成为沿海渔民转产转业的重要方向。为缓解近岸养殖压力、拓宽深海水域养殖,基于中国海域养殖条件,设计了一种可以应对恶劣海况条件的新型复式...深海抗风浪网箱养殖区别于传统近海网箱、围栏等养殖方式,适合发展高经济价值的鱼类养殖,现已成为沿海渔民转产转业的重要方向。为缓解近岸养殖压力、拓宽深海水域养殖,基于中国海域养殖条件,设计了一种可以应对恶劣海况条件的新型复式抗风浪深海养殖网箱。该网箱放弃了传统的浮架和浮圈结构,采用双浮筒可调节结构,以适应不同海域海浪状况,减少因刚性连接而发生的中拱和中垂现象;此外,浮筒与立体浮框连接而成的垂荡体可以提供较大的垂荡以及纵向摇摆阻尼,控制网箱的运动幅度。同时采用莫里森公式和伯努利方程对网箱承受的风、浪、流等环境载荷进行受力计算,并与传统高密度聚乙烯(High density polyethylene,HDPE)网箱进行对比,结果显示新型复式抗风浪网箱比传统HDPE网箱更能承受海洋中的环境负载。研究结果为后续研究和发展大型抗风浪网箱养殖提供了设计参考。展开更多
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.
文摘深海抗风浪网箱养殖区别于传统近海网箱、围栏等养殖方式,适合发展高经济价值的鱼类养殖,现已成为沿海渔民转产转业的重要方向。为缓解近岸养殖压力、拓宽深海水域养殖,基于中国海域养殖条件,设计了一种可以应对恶劣海况条件的新型复式抗风浪深海养殖网箱。该网箱放弃了传统的浮架和浮圈结构,采用双浮筒可调节结构,以适应不同海域海浪状况,减少因刚性连接而发生的中拱和中垂现象;此外,浮筒与立体浮框连接而成的垂荡体可以提供较大的垂荡以及纵向摇摆阻尼,控制网箱的运动幅度。同时采用莫里森公式和伯努利方程对网箱承受的风、浪、流等环境载荷进行受力计算,并与传统高密度聚乙烯(High density polyethylene,HDPE)网箱进行对比,结果显示新型复式抗风浪网箱比传统HDPE网箱更能承受海洋中的环境负载。研究结果为后续研究和发展大型抗风浪网箱养殖提供了设计参考。