期刊文献+
共找到233,277篇文章
< 1 2 250 >
每页显示 20 50 100
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms
1
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
2
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
3
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
下载PDF
Development of NIR Responsive Upconversion Nanosensor for Turn-on Detection of 4-Nonylphenol
4
作者 HUANG Sili XU Kuncheng +5 位作者 YE Yiwen WEN Hongli CHEN Rihui SONG Wei CHEN Wei ABDUR Raheem Aleem 《发光学报》 北大核心 2025年第1期140-155,共16页
4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b... 4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources. 展开更多
关键词 Er^(3+)/Yb^(3+)/Nd^(3+) upconversion nanoparticles Förster resonance energy transfer ESTROGEN detection
下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
5
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
下载PDF
Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection
6
作者 Muhammad Armghan Latif Zohaib Mushtaq +4 位作者 Saifur Rahman Saad Arif Salim Nasar Faraj Mursal Muhammad Irfan Haris Aziz 《Computer Modeling in Engineering & Sciences》 2025年第2期1667-1695,共29页
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutiona... Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions. 展开更多
关键词 Ransomware attacks CYBERSECURITY vision transformer convolutional neural network feature fusion ENCRYPTION threat detection
下载PDF
Topology Data Analysis-Based Error Detection for Semantic Image Transmission with Incremental Knowledge-Based HARQ
7
作者 Ni Fei Li Rongpeng +1 位作者 Zhao Zhifeng Zhang Honggang 《China Communications》 2025年第1期235-255,共21页
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe... Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission. 展开更多
关键词 error detection incremental knowledgebased HARQ joint source-channel coding semantic communication swin transformer topological data analysis
下载PDF
Advances and challenges in molecular understanding, early detection, and targeted treatment of liver cancer
8
作者 Ji Shi Xu Zhu Jun-Bo Yang 《World Journal of Hepatology》 2025年第1期8-17,共10页
In this review,we explore the application of next-generation sequencing in liver cancer research,highlighting its potential in modern oncology.Liver cancer,particularly hepatocellular carcinoma,is driven by a complex ... In this review,we explore the application of next-generation sequencing in liver cancer research,highlighting its potential in modern oncology.Liver cancer,particularly hepatocellular carcinoma,is driven by a complex interplay of genetic,epigenetic,and environmental factors.Key genetic alterations,such as mutations in TERT,TP53,and CTNNB1,alongside epigenetic modifications such as DNA methylation and histone remodeling,disrupt regulatory pathways and promote tumorigenesis.Environmental factors,including viral infections,alcohol consum-ption,and metabolic disorders such as nonalcoholic fatty liver disease,enhance hepatocarcinogenesis.The tumor microenvironment plays a pivotal role in liver cancer progression and therapy resistance,with immune cell infiltration,fibrosis,and angiogenesis supporting cancer cell survival.Advances in immune check-point inhibitors and chimeric antigen receptor T-cell therapies have shown po-tential,but the unique immunosuppressive milieu in liver cancer presents challenges.Dysregulation in pathways such as Wnt/β-catenin underscores the need for targeted therapeutic strategies.Next-generation sequencing is accele-rating the identification of genetic and epigenetic alterations,enabling more precise diagnosis and personalized treatment plans.A deeper understanding of these molecular mechanisms is essential for advancing early detection and developing effective therapies against liver cancer. 展开更多
关键词 Liver cancer Molecular mechanisms Next-generation sequencing Early detection Wnt/β-catenin signaling
下载PDF
基于改进Detection Transformer的棉花幼苗与杂草检测模型研究
9
作者 冯向萍 杜晨 +3 位作者 李永可 张世豪 舒芹 赵昀杰 《计算机与数字工程》 2024年第7期2176-2182,共7页
基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transforme... 基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transformer注意力模块,提高模型对特征图目标形变的处理能力。提出新的降噪训练机制,解决了二分图匹配不稳定问题。提出混合查询选择策略,提高解码器对目标类别和位置信息的利用效率。使用Swin Transformer作为网络主干,提高模型特征提取能力。通过对比原网络,论文提出的模型方法在训练过程中表现出更快的收敛速度,并且在准确率方面提高了6.7%。 展开更多
关键词 目标检测 detection Transformer 棉花幼苗 杂草检测
下载PDF
Automatic detection method of bladder tumor cells based on color and shape features
10
作者 Zitong Zhao Yanbo Wang +6 位作者 Jiaqi Chen Mingjia Wang Shulong Feng Jin Yang Nan Song Jinyu Wang Ci Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期1-13,共13页
Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology ... Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the efficiency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease. 展开更多
关键词 Bladder tumor cells microscopic hyperspectral fusion feature support vector machine automatic detection.
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:4
11
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Esophageal cancer screening,early detection and treatment:Current insights and future directions 被引量:3
12
作者 Hong-Tao Qu Qing Li +7 位作者 Liang Hao Yan-Jing Ni Wen-Yu Luan Zhe Yang Xiao-Dong Chen Tong-Tong Zhang Yan-Dong Miao Fang Zhang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1180-1191,共12页
Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately ... Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately 604000 new cases of esophageal cancer,resulting in 544000 deaths.The 5-year survival rate hovers around a mere 15%-25%.Notably,distinct variations exist in the risk factors associated with the two primary histological types,influencing their worldwide incidence and distribution.Squamous cell carcinoma displays a high incidence in specific regions,such as certain areas in China,where it meets the cost-effect-iveness criteria for widespread endoscopy-based early diagnosis within the local population.Conversely,adenocarcinoma(EAC)represents the most common histological subtype of esophageal cancer in Europe and the United States.The role of early diagnosis in cases of EAC originating from Barrett's esophagus(BE)remains a subject of controversy.The effectiveness of early detection for EAC,particularly those arising from BE,continues to be a debated topic.The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses.In areas with higher incidences,such as China and Japan,early diagnosis is more common,which has led to the advancement of endoscopic methods as definitive treatments.These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality.Early screening,prompt diagnosis,and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer. 展开更多
关键词 Esophageal cancer SCREENING Early detection Treatment Endoscopic mucosal resection Endoscopic submucosal dissection
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
13
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
A Hybrid Intrusion Detection Method Based on Convolutional Neural Network and AdaBoost 被引量:1
14
作者 Wu Zhijun Li Yuqi Yue Meng 《China Communications》 SCIE CSCD 2024年第11期180-189,共10页
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection... To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data. 展开更多
关键词 ADABOOST CNN detection rate false positive rate feature extraction intrusion detection
下载PDF
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
15
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
Strip steel surface defect detection algorithm based on improved Faster R-CNN 被引量:2
16
作者 齐继阳 吴宇帆 《China Welding》 CAS 2024年第2期11-22,共12页
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ... To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value. 展开更多
关键词 defect detection RC-Swin Transformer CBAM-BiFPN RoI align Soft NMS
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel 被引量:1
17
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Overview of radar detection methods for low altitude targets in marine environments 被引量:1
18
作者 YANG Yong YANG Boyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期1-13,共13页
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance... In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments. 展开更多
关键词 RADAR sea clutter multipath scattering detection low altitude target
下载PDF
Automated Vulnerability Detection of Blockchain Smart Contacts Based on BERT Artificial Intelligent Model 被引量:1
19
作者 Feng Yiting Ma Zhaofeng +1 位作者 Duan Pengfei Luo Shoushan 《China Communications》 SCIE CSCD 2024年第7期237-251,共15页
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De... The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy. 展开更多
关键词 BERT blockchain smart contract vulnerability detection
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images 被引量:1
20
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATION mathematical morphology image processing
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部