This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)...This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)todistribute around the breast phantom.The operating frequency has been observed from6–14GHzwith a minimumreturn loss of−61.18 dB and themaximumgain of current proposed antenna is 5.8 dBiwhich is flexiblewith respectto the size of antenna.After the distribution of eight antennas around the breast phantom,the return loss curveswere observed in the presence and absence of tumor cells inside the breast phantom,and these observations showa sharp difference between the presence and absence of tumor cells.The simulated results show that this proposedantenna is suitable for early detection of cancerous cells inside the breast.展开更多
Background:The reputation system has been designed as an effective mechanism to reduce risks associated with online shopping for customers.However,it is vulnerable to rating fraud.Some raters may inject unfairly high ...Background:The reputation system has been designed as an effective mechanism to reduce risks associated with online shopping for customers.However,it is vulnerable to rating fraud.Some raters may inject unfairly high or low ratings to the system so as to promote their own products or demote their competitors.Method:This study explores the rating fraud by differentiating the subjective fraud from objective fraud.Then it discusses the effectiveness of blockchain technology in objective fraud and its limitation in subjective fraud,especially the rating fraud.Lastly,it systematically analyzes the robustness of blockchain-based reputation systems in each type of rating fraud.Results:The detection of fraudulent raters is not easy since they can behave strategically to camouflage themselves.We explore the potential strengths and limitations of blockchain-based reputation systems under two attack goals:ballot-stuffing and bad-mouthing,and various attack models including constant attack,camouflage attack,whitewashing attack and sybil attack.Blockchain-based reputation systems are more robust against bad-mouthing than ballot-stuffing fraud.Conclusions:Blockchain technology provides new opportunities for redesigning the reputation system.Blockchain systems are very effective in preventing objective information fraud,such as loan application fraud,where fraudulent information is fact-based.However,their effectiveness is limited in subjective information fraud,such as rating fraud,where the ground-truth is not easily validated.Blockchain systems are effective in preventing bad mouthing and whitewashing attack,but they are limited in detecting ballot-stuffing under sybil attack,constant attacks and camouflage attack.展开更多
With the complexity of integrated circuits is continually increasing, a local defect in circuits may cause multiple faults. The behavior of a digital circuit with a multiple fault may significantly differ from that of...With the complexity of integrated circuits is continually increasing, a local defect in circuits may cause multiple faults. The behavior of a digital circuit with a multiple fault may significantly differ from that of a single fault. A new method for the detection of multiple faults in digital circuits is presented in this paper, the method is based on binary decision diagram (BDD). First of all, the BDDs for the normal circuit and faulty circuit are built respectively. Secondly, a test BDD is obtained by the XOR operation of the BDDs corresponds to normal circuit and faulty circuit. In the test BDD, each input assignment that leads to the leaf node labeled 1 is a test vector of multiple faults. Therefore, the test set of multiple faults is generated by searching for the type of input assignments in the test BDD. Experimental results on some digital circuits show the feasibility of the approach presented in this paper.展开更多
Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrat...Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrate based on nanocone forests.The substrates are prepared by using plasma treatment technique,which is a simple,fast and high-throughput approach.The SERS substrate based on nanocone forests exhibits high sensitivity.In the experiment,miRNA with a concentration as low as 10-10 M can be achieved.Meanwhile,the proposed SERS substrate shows a high uniformity over a large area.These experimental results demonstrate great potential of the 3D SERS substrate in wide applications.展开更多
To solve the problem that the conventional detections in DS-CDMA suffer from high complexity and poor robustness for the time-hopping pulse signals, the received pulse signals were remodeled, and a mulfipath-free dete...To solve the problem that the conventional detections in DS-CDMA suffer from high complexity and poor robustness for the time-hopping pulse signals, the received pulse signals were remodeled, and a mulfipath-free detection scheme, which provides a simple approach to select samples of received signals, was introduced. By this scheme, the subsequent multiuser detection (MUD) would get rid of the mis- match due to the correlative multipath signal in IR-UWB. In addition, a computationally efficient recur-sive least squares (RLS) type algorithm based on least mean fourth (LMF) criterion is derived to suppress multi-access interference. The proposed multiuser detection algorithm performs well at low complexity, even in dense muhipath environment.展开更多
A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data cluste...A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decomposition based seismic attenuation characteristics,relative wave impedance features of prestack seismic data as the selected multiple attributes for one tight sandstone gas reservoir and further employ principal component analysis combined with quantum neural networks for giving the distinguishing results of the weak responses of the gas reservoir,which is hard to detect by using the conventional technologies.For the seismic data from a tight sandstone gas reservoir in the Sichuan basin,China,we found that multiattributes based quantum neural networks can effectively capture the weak seismic responses features associated with gas saturation in the gas reservoir.This study is hoped to be useful as an aid for hydrocarbon detections for the gas reservoir with the characteristics of the weak seismic responses by the complement of the multiattributes based quantum neural networks.展开更多
In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped z...In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped zinc oxide(ZnO)nanoneedles were synthesized through a hydrothermal strategy with the addition of different contents of citric acid.The Na-doped ZnO gas sensor with a 3:1 molar ratio of Na^(+)and citric acid showed outstanding sensing properties with an optimal selectivity to various VOCs(formaldehyde(HCOH),isopropanol,acetone,and ammonia)based on working temperature regulation.Specifically,significantly enhanced sensitivity(21.3@5 ppm)compared with pristine ZnO(~7-fold),low limit of detection(LOD)(298 ppb),robust humidity resistance,and long-term stability of formaldehyde sensing performances were obtained,which can be attributed to the formation of a higher concentration of oxygen vacancies(20.98%)and the active electron transitions.Furthermore,the improved sensing mechanism was demonstrated by the exquisite band structure and introduction of the additional acceptor level,which resulted in the narrowed bandgap of ZnO.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg...Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num...Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi...Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.展开更多
In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence ...In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.展开更多
Mercury ion(Hg^(2+)),known as one of the highly toxic and soluble heavy metal ions,is causing serious environmental pollution and irreversible damage to the health.It is urgent to develop some rapid and ultrasensitive...Mercury ion(Hg^(2+)),known as one of the highly toxic and soluble heavy metal ions,is causing serious environmental pollution and irreversible damage to the health.It is urgent to develop some rapid and ultrasensitive methods for detecting trace mercury ions in the environment especially drink water.Surface-enhanced Raman scattering(SERS)is considered as a novel and powerful optical analysis technique since it has the significant advantages of ultra-sensitivity and high specificity.In recent years,the SERS technique and its application in the detection of Hg^(2+)have become more prevalent and compelling.This review provides an overall survey of the development of SERS-based Hg^(2+)detections and presents a summary relating to the basic principles,detection strategies,recent advances and current challenges of SERS for Hg^(2+)detections.展开更多
In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser, pulsed hard X rays and single α particles, the energy...In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser, pulsed hard X rays and single α particles, the energy response to pulsed hard X ray, the scintillation efficiency to γ rays, the response to pulsed proton, and the relations of the light intensity varied with the proton energy were measured and analyzed in detail. Results show that the ZnO:Ga crystal has potential applications in the regime of pulse radiation detection.展开更多
Gravitational wave signal from the inspiral of stellar-mass binary black hole can be used as standard sirens to perform cosmological inference.This inspiral covers a wide range of frequency bands,from the millihertz b...Gravitational wave signal from the inspiral of stellar-mass binary black hole can be used as standard sirens to perform cosmological inference.This inspiral covers a wide range of frequency bands,from the millihertz band to the audio-band,allowing for detections by both space-borne and ground-based gravitational wave detectors.In this work,we conduct a comprehensive study on the ability to constrain the Hubble constant using the dark standard sirens,or gravitational wave events that lack electromagnetic counterparts.To acquire the redshift information,we weight the galaxies within the localization error box with photometric information from several bands and use them as a proxy for the binary black hole redshift.We discover that Tian Qin is expected to constrain the Hubble constant to a precision of roughly 30%through detections of 10 gravitational wave events;in the most optimistic case,the Hubble constant can be constrained to a precision of<10%,assuming Tian Qin I+II.In the optimistic case,the multi-detector network of Tian Qin and LISA is capable of constraining the Hubble constant to within 5%precision.It is worth highlighting that the multi-band network of Tian Qin and Einstein Telescope is capable of constraining the Hubble constant to a precision of about 1%.We conclude that inferring the Hubble constant without bias from photo-z galaxy catalog is achievable,and we also demonstrate self-consistency using the P-P plot.On the other hand,high-quality spectroscopic redshift information is crucial for improving the estimation precision of Hubble constant.展开更多
Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them...Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.展开更多
基金the International Science and Technology Cooperation Project of the Shenzhen Science and Technology Commission(GJHZ20200731095804014).
文摘This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)todistribute around the breast phantom.The operating frequency has been observed from6–14GHzwith a minimumreturn loss of−61.18 dB and themaximumgain of current proposed antenna is 5.8 dBiwhich is flexiblewith respectto the size of antenna.After the distribution of eight antennas around the breast phantom,the return loss curveswere observed in the presence and absence of tumor cells inside the breast phantom,and these observations showa sharp difference between the presence and absence of tumor cells.The simulated results show that this proposedantenna is suitable for early detection of cancerous cells inside the breast.
文摘Background:The reputation system has been designed as an effective mechanism to reduce risks associated with online shopping for customers.However,it is vulnerable to rating fraud.Some raters may inject unfairly high or low ratings to the system so as to promote their own products or demote their competitors.Method:This study explores the rating fraud by differentiating the subjective fraud from objective fraud.Then it discusses the effectiveness of blockchain technology in objective fraud and its limitation in subjective fraud,especially the rating fraud.Lastly,it systematically analyzes the robustness of blockchain-based reputation systems in each type of rating fraud.Results:The detection of fraudulent raters is not easy since they can behave strategically to camouflage themselves.We explore the potential strengths and limitations of blockchain-based reputation systems under two attack goals:ballot-stuffing and bad-mouthing,and various attack models including constant attack,camouflage attack,whitewashing attack and sybil attack.Blockchain-based reputation systems are more robust against bad-mouthing than ballot-stuffing fraud.Conclusions:Blockchain technology provides new opportunities for redesigning the reputation system.Blockchain systems are very effective in preventing objective information fraud,such as loan application fraud,where fraudulent information is fact-based.However,their effectiveness is limited in subjective information fraud,such as rating fraud,where the ground-truth is not easily validated.Blockchain systems are effective in preventing bad mouthing and whitewashing attack,but they are limited in detecting ballot-stuffing under sybil attack,constant attacks and camouflage attack.
基金Supported by the National Natural Science Foun-dation of China (60006002) Natural Science Research Project of Education Department of Guangdong Province of China (02019)
文摘With the complexity of integrated circuits is continually increasing, a local defect in circuits may cause multiple faults. The behavior of a digital circuit with a multiple fault may significantly differ from that of a single fault. A new method for the detection of multiple faults in digital circuits is presented in this paper, the method is based on binary decision diagram (BDD). First of all, the BDDs for the normal circuit and faulty circuit are built respectively. Secondly, a test BDD is obtained by the XOR operation of the BDDs corresponds to normal circuit and faulty circuit. In the test BDD, each input assignment that leads to the leaf node labeled 1 is a test vector of multiple faults. Therefore, the test set of multiple faults is generated by searching for the type of input assignments in the test BDD. Experimental results on some digital circuits show the feasibility of the approach presented in this paper.
文摘Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrate based on nanocone forests.The substrates are prepared by using plasma treatment technique,which is a simple,fast and high-throughput approach.The SERS substrate based on nanocone forests exhibits high sensitivity.In the experiment,miRNA with a concentration as low as 10-10 M can be achieved.Meanwhile,the proposed SERS substrate shows a high uniformity over a large area.These experimental results demonstrate great potential of the 3D SERS substrate in wide applications.
基金the National Natural Science Foundation of China(No60432040)the Guangxi Key Laboratory Foundation(No,063006-5G)
文摘To solve the problem that the conventional detections in DS-CDMA suffer from high complexity and poor robustness for the time-hopping pulse signals, the received pulse signals were remodeled, and a mulfipath-free detection scheme, which provides a simple approach to select samples of received signals, was introduced. By this scheme, the subsequent multiuser detection (MUD) would get rid of the mis- match due to the correlative multipath signal in IR-UWB. In addition, a computationally efficient recur-sive least squares (RLS) type algorithm based on least mean fourth (LMF) criterion is derived to suppress multi-access interference. The proposed multiuser detection algorithm performs well at low complexity, even in dense muhipath environment.
基金Supported in part by the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2021ZYD0030)in part by the National Natural Science Foundation of China(Nos.41804140,42074163,41974160,42030812).
文摘A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decomposition based seismic attenuation characteristics,relative wave impedance features of prestack seismic data as the selected multiple attributes for one tight sandstone gas reservoir and further employ principal component analysis combined with quantum neural networks for giving the distinguishing results of the weak responses of the gas reservoir,which is hard to detect by using the conventional technologies.For the seismic data from a tight sandstone gas reservoir in the Sichuan basin,China,we found that multiattributes based quantum neural networks can effectively capture the weak seismic responses features associated with gas saturation in the gas reservoir.This study is hoped to be useful as an aid for hydrocarbon detections for the gas reservoir with the characteristics of the weak seismic responses by the complement of the multiattributes based quantum neural networks.
基金the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)the Yangzhou Science and Technology Plan Project(No.YZ2023246)the Qinglan Project of Yangzhou University,and the Research Innovation Plan of Graduate Education Innovation Project in Jiangsu Province(No.KYCX23_3530).
文摘In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped zinc oxide(ZnO)nanoneedles were synthesized through a hydrothermal strategy with the addition of different contents of citric acid.The Na-doped ZnO gas sensor with a 3:1 molar ratio of Na^(+)and citric acid showed outstanding sensing properties with an optimal selectivity to various VOCs(formaldehyde(HCOH),isopropanol,acetone,and ammonia)based on working temperature regulation.Specifically,significantly enhanced sensitivity(21.3@5 ppm)compared with pristine ZnO(~7-fold),low limit of detection(LOD)(298 ppb),robust humidity resistance,and long-term stability of formaldehyde sensing performances were obtained,which can be attributed to the formation of a higher concentration of oxygen vacancies(20.98%)and the active electron transitions.Furthermore,the improved sensing mechanism was demonstrated by the exquisite band structure and introduction of the additional acceptor level,which resulted in the narrowed bandgap of ZnO.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
基金financially supported by the National Key Research and Development Program of China(No.2022YFA1205300 and No.2022YFA1205304)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD103).
文摘Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
基金the“Intelligent Recognition Industry Service Center”as part of the Featured Areas Research Center Program under the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan,and the National Science and Technology Council,Taiwan,under grants 113-2221-E-224-041 and 113-2622-E-224-002.Additionally,partial support was provided by Isuzu Optics Corporation.
文摘Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.
文摘In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.
基金the National Basic Research Program of China(2012CB933301)the National Natural Science Foundation of China(21475064)+4 种基金the Natural Science Foundation of Jiangsu Province of China(BM2012010)the Natural Science Fund for Colleges and Universities in Jiangsu Province(13KJB140009)the Sci-tech Support Plan of Jiangsu Province(BE2014719)the Research Innovation Program for College Graduates of Jiangsu Province(SJZZ15_0107)the Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)
文摘Mercury ion(Hg^(2+)),known as one of the highly toxic and soluble heavy metal ions,is causing serious environmental pollution and irreversible damage to the health.It is urgent to develop some rapid and ultrasensitive methods for detecting trace mercury ions in the environment especially drink water.Surface-enhanced Raman scattering(SERS)is considered as a novel and powerful optical analysis technique since it has the significant advantages of ultra-sensitivity and high specificity.In recent years,the SERS technique and its application in the detection of Hg^(2+)have become more prevalent and compelling.This review provides an overall survey of the development of SERS-based Hg^(2+)detections and presents a summary relating to the basic principles,detection strategies,recent advances and current challenges of SERS for Hg^(2+)detections.
文摘In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser, pulsed hard X rays and single α particles, the energy response to pulsed hard X ray, the scintillation efficiency to γ rays, the response to pulsed proton, and the relations of the light intensity varied with the proton energy were measured and analyzed in detail. Results show that the ZnO:Ga crystal has potential applications in the regime of pulse radiation detection.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)the National Natural Science Foundation of China(Grant Nos.12173104,11805286,and 11690022)the National Key Research and Development Program of China(Grant No.2020YFC2201400)。
文摘Gravitational wave signal from the inspiral of stellar-mass binary black hole can be used as standard sirens to perform cosmological inference.This inspiral covers a wide range of frequency bands,from the millihertz band to the audio-band,allowing for detections by both space-borne and ground-based gravitational wave detectors.In this work,we conduct a comprehensive study on the ability to constrain the Hubble constant using the dark standard sirens,or gravitational wave events that lack electromagnetic counterparts.To acquire the redshift information,we weight the galaxies within the localization error box with photometric information from several bands and use them as a proxy for the binary black hole redshift.We discover that Tian Qin is expected to constrain the Hubble constant to a precision of roughly 30%through detections of 10 gravitational wave events;in the most optimistic case,the Hubble constant can be constrained to a precision of<10%,assuming Tian Qin I+II.In the optimistic case,the multi-detector network of Tian Qin and LISA is capable of constraining the Hubble constant to within 5%precision.It is worth highlighting that the multi-band network of Tian Qin and Einstein Telescope is capable of constraining the Hubble constant to a precision of about 1%.We conclude that inferring the Hubble constant without bias from photo-z galaxy catalog is achievable,and we also demonstrate self-consistency using the P-P plot.On the other hand,high-quality spectroscopic redshift information is crucial for improving the estimation precision of Hubble constant.
基金the financial support from Shenzhen Science and Technology Program (JCYJ20210324142210027, X.D.)the National Natural Science Foundation of China (52103136, 22275028, U22A20153, 22102017, 22302033, and 52106194)+5 种基金the Sichuan Outstanding Young Scholars Foundation (2021JDJQ0013)Natural Science Foundation of Sichuan Province (2022NSFSC1271)Sichuan Science and Technology Program (2023JDRC0082)“Oncology Medical Engineering Innovation Foundation” project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital (ZYGX2021YGCX009)“Medical and Industrial Cross Foundation” of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital (ZYGX2021YGLH207)Shandong Key R&D grant (2022CXGC010509)。
文摘Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.