Efficient coupling of terahertz electromagnetic wave with the active region in a terahertz detector is required to enhance the optical sensitivity. In this work, we demonstrate direct integration of a field-effect-tra...Efficient coupling of terahertz electromagnetic wave with the active region in a terahertz detector is required to enhance the optical sensitivity. In this work, we demonstrate direct integration of a field-effect-transistor(FET) terahertz detector chip at the waveguide port of a horn antenna. Although the integration without a proper backshot is rather preliminary, the noise-equivalent power is greatly reduced from 2.7 nW/Hz^(1/2) for the bare detector chip to 76 pW/Hz^(1/2) at340 GHz. The enhancement factor of about 30 is confirmed by simulations revealing the effective increase in the energy flux density seen by the detector. The simulation further confirms the frequency response of the horn antenna and the onchip antennas. A design with the detector chip fully embedded within a waveguide cavity could be made to further enhance the coupling efficiency.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFF0100501 and 2016YFC0801203)the National Natural Science Foundation of China(Grant Nos.61611530708,11403084,61401456,61401297,and 61505242)+2 种基金the Six Talent Peaks Project of Jiangsu Province,China(Grant No.XXRJ-079)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017372)the Russian Foundation for Basic Research(Grant No.17-52-53063)
文摘Efficient coupling of terahertz electromagnetic wave with the active region in a terahertz detector is required to enhance the optical sensitivity. In this work, we demonstrate direct integration of a field-effect-transistor(FET) terahertz detector chip at the waveguide port of a horn antenna. Although the integration without a proper backshot is rather preliminary, the noise-equivalent power is greatly reduced from 2.7 nW/Hz^(1/2) for the bare detector chip to 76 pW/Hz^(1/2) at340 GHz. The enhancement factor of about 30 is confirmed by simulations revealing the effective increase in the energy flux density seen by the detector. The simulation further confirms the frequency response of the horn antenna and the onchip antennas. A design with the detector chip fully embedded within a waveguide cavity could be made to further enhance the coupling efficiency.