期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
High-temperature mechanical properties of aluminium alloys reinforced with titanium diboride (TiB_2) particles 被引量:6
1
作者 J.Ooro 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期200-205,共6页
The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys ... The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the alumin- ium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence. 展开更多
关键词 metal-matrix composites aluminium high-temperature properties titanium diboride
下载PDF
Structural and mechanical stability of rare-earth diborides 被引量:4
2
作者 Haci Ozisik Engin Deligoz +1 位作者 Kemal Colakoglu Gokhan Surucu 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期369-376,共8页
Structural and mechanical properties of several rare-earth diborides were systematically investigated by first principles calculations. Specifically, we studied XB2 , where X=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu in ... Structural and mechanical properties of several rare-earth diborides were systematically investigated by first principles calculations. Specifically, we studied XB2 , where X=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu in the hexagonal AlB2 , ReB2 , and orthorhombic OsB2 -type structures. The lattice parameters, bulk modulus, bond distances, second order elastic constants, and related polycrystalline elastic moduli (e.g., shear modulus, Young’s modulus, Poisson’s ratio, Debye temperature, sound velocities) were calculated. Our results indicate that these compounds are mechanically stable in the considered structures, and according to "Chen’s method", the predicted Vickers hardness shows that they are hard materials in AlB2 - and OsB2 -type structures. 展开更多
关键词 ab initio calculations elastic properties HARDNESS rare-earth diborides
下载PDF
Electronic Structure and Chemical Bond of Titanium Diboride 被引量:1
3
作者 闵新民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期11-14,共4页
Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covale... Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covalent bond,so TiB 2 has high melting point,hardness and chemical stability.Titanium atom releases two electrons to form Ti 2+ ions,and a boron atom gets one electron to come into B- ion.B- takes the sp2 hybrid and forms σ bonds to link other boron atoms in the same layer.The other one 2p z orbital of every B- ion in the same layer interacts each other to form the π molecular orbital,so TiB 2 has fine electrical property.The calculated density of state is close to the result of XPS experiment of TiB 2.Mainly Ti3d and B2p atomic orbitals contribute the total DOS near the Fermi level. 展开更多
关键词 titanium diboride PROPERTY CALCULATION electronic structure chemical bond
下载PDF
Microstructure Study on Oxidation of Zirconium Diboride
4
作者 GAO Zhenxin LIU Cheng 《China's Refractories》 CAS 2019年第4期1-6,共6页
The oxidation behaviors of fused zirconium diboride and chemosynthetic zirconium diboride as well as morphology and composition of their oxidation products were researched by FESEM-EDS and XRD.The two kinds of zirconi... The oxidation behaviors of fused zirconium diboride and chemosynthetic zirconium diboride as well as morphology and composition of their oxidation products were researched by FESEM-EDS and XRD.The two kinds of zirconium diboride were heated at 700℃,900℃,1100℃and 1300℃for 3 h in air,respectively.The results show that Zr02 and B203(Ⅰ)are generated from the chemosynthetic zirconium diboride oxidized at 700℃for 3 h or the fused zirconium diboride oxidized at 800℃for 24 h;B203(Ⅰ)dissolves into water and then H3B03 crystallizes. 展开更多
关键词 zirconium diboride GRAPHITE carbon containing refractories anti-oxidation agent ZIRCONIA boron oxide
下载PDF
Zirconium Diboride Powders Synthesized by Boro/Carbothermal Reaction Using Sol-Gel Technology
5
作者 季惠明 范红娜 +1 位作者 丰红军 孙晓红 《Transactions of Tianjin University》 EI CAS 2015年第3期228-233,共6页
A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the st... A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the starting materials and propylene oxide (PO) as complexing agent at a low temperature. Simultaneously, the experimen- tal and theoretical studies of ZrB2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like ZrB2 powder without residual ZrO2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400~C in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O sys- tem producing ZrB2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also ob- served that, with the increase of reaction temperature, the reaction which produced ZrB2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system. 展开更多
关键词 zirconium diboride boro/carbothermal reaction kinetic model sol-gel method
下载PDF
Study on Thermodynamics and Kinetics for the Reaction of Magnesium Diboride and Water by Microcalorimetry
6
作者 Fengqi Zhao Xiaoling Xing +5 位作者 Chuan Xiao Rongzu Hu Liang Xue Hongxu Gao Libai Xiao Ting An 《American Journal of Analytical Chemistry》 2011年第2期270-275,共6页
An exothermic reaction between MgB2 and water was observed in our laboratory at high temperature, although no obvious reaction occurred at room temperature. The reaction process of MgB2 and water was therefore studied... An exothermic reaction between MgB2 and water was observed in our laboratory at high temperature, although no obvious reaction occurred at room temperature. The reaction process of MgB2 and water was therefore studied by using microcalorimetry. The results showed that the reaction enthalpies of MgB2 with water and the formation enthalpies of MgB2 at T = (323.15, 328.15, 333.15 and 338.15) K are (–313.15, –317.85, –322.09, –329.27) kJ?mol–1, and (–238.96, –237.73, –236.50, –234.30) kJ●mol–1, respectively. The standard enthalpy of formation and standard molar heat capacity of MgB2 obtained by extrapolation method are –245.11 kJ●mol–1 and 246 J●mol–1●K–1, respectively. The values of activation energy E, pre-exponential factor A and the reaction order for the reaction of MgB2 and water over the temperature range from 323.15 K to 338.15 K are 50.80 kJ●mol–1, 104.78 s–1 and about 1.346, respectively. The positive values of ΔG≠ and ΔH≠ and negative value of ΔS≠ indicate that the reaction can take place easily above 314.45 K. 展开更多
关键词 MAGNESIUM diboride WATER MICROCALORIMETRY THERMODYNAMICS KINETICS
下载PDF
Atomic-level insights into the initial oxidation mechanism of high-entropy diborides by first-principles calculations 被引量:1
7
作者 Yiwen Liu Hulei Yu +1 位作者 Hong Meng Yanhui Chu 《Journal of Materiomics》 SCIE CSCD 2024年第2期423-430,共8页
Understanding the initial oxidation mechanism is critical for studying the oxidation resistance of high-entropy diborides.However,related studies are scarce.Herein,the initial oxidation mechanism of(Zr_(0.25)Ti_(0.25)... Understanding the initial oxidation mechanism is critical for studying the oxidation resistance of high-entropy diborides.However,related studies are scarce.Herein,the initial oxidation mechanism of(Zr_(0.25)Ti_(0.25)Nb_(0.25)Ta_(0.25))B_(2)high-entropy diborides(HEB_(2)-1)is investigated by first-principles calculations at the atomic level.By employing the two-region model method,the most stable surface of HEB_(2)-1 is determined to be(1120)surface.The dissociative adsorption process of the oxygen molecule on the HEB_(2)-1-(1120)surface is predicted to proceed spontaneously,where OeO bond breaks and each oxygen atom is chemisorbed on the most preferable hollow site.The adsorption energy and the diffusion barrier of the oxygen atom on the(1120)surface of HEB_(2)-1 are in the vicinity of the average level of the cor-responding four individual diborides.In addition,ab initio molecular dynamics simulations indicate a high initial oxidation resistance of HEB_(2)-1 at 1000 K.Our results are beneficial to further designing the high-entropy diborides with excellent oxidation resistance. 展开更多
关键词 High-entropy diborides Oxidation First-principles calculations
原文传递
Enhanced oxidation resistance of high-entropy diborides by multicomponent synergistic effects
8
作者 Zhongyu Tang Zihao Wen +2 位作者 Lei Zhuang Hulei Yu Yanhui Chu 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3392-3400,共9页
Oxidation resistance is critical for high-entropy diborides(HEBs)to be used as thermal structural components under oxygen-containing high-temperature environments.Here,we successfully realize the exploitation of(Zr,Ta... Oxidation resistance is critical for high-entropy diborides(HEBs)to be used as thermal structural components under oxygen-containing high-temperature environments.Here,we successfully realize the exploitation of(Zr,Ta,Cr,W)B2 HEBs with superior oxidation resistance by comprehensively screening their compositions.To be specific,21 kinds of HEB-xTM(x=0–25 mol%,TM=Zr,Ta,Cr,and W)samples are fabricated via an ultrafast high-temperature sintering technique.The as-fabricated HEB-5Cr samples show the best oxidation resistance at 1673 K among all the samples.Subsquent oxidation investigations further confirm the as-fabricated HEB-5Cr samples possess superior oxidation resistance with the parabolic oxidation behavior across 1473–1773 K.Such superior oxidation resistance is believed to result from the multi-component synergistic effects.Particularly,the Ta^(5+)and W^(4+)cations with high ionic field strengths can promote the formation of 4B–O–4B linkages between[BO4]tetrahedrons by charge balance,which can stabilize the threedimensional skeletal structure of B_(2)O_(3)glass and consequently result in an improved viscosity of the B_(2)O_(3)glassy layer.In addition,the ZrO_(2)and Cr_(2)O_(3)with high melting points can dissolve into the B_(2)O_(3)glass to increase its glass transition temperature,leading to an enhanced viscosity of the B_(2)O_(3)glassy layer. 展开更多
关键词 high-entropy diborides composition screening oxidation resistance synergistic effects
原文传递
Electronic structures and strengthening mechanisms of superhard high-entropy diborides 被引量:3
9
作者 Gang Yao William-Yi Wang +9 位作者 Pei-Xuan Li Ke Ren Jia-Qi Lu Xing-Yu Gao De-Ye Lin Jun Wang Yi-Guang Wang Hai-Feng Song Zi-Kui Liu Jin-Shan Li 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期614-628,共15页
High-entropy diborides(HEBs)have attracted extensive research due to their potential ultra-high hardness.In the present work,the effects of transition metals(TM)on lattice parameters,electron work function(EWF),bondin... High-entropy diborides(HEBs)have attracted extensive research due to their potential ultra-high hardness.In the present work,the effects of transition metals(TM)on lattice parameters,electron work function(EWF),bonding charge density,and hardness of HEBs are comprehensively investigated by the first-principles calculations,including(TiZrHfNbTa)B_(2),(TiZrHfNbMo)B_(2),(TiZrHfTaMo)B_(2),(TiZrNbTaMo)B_(2),and(TiHfNbTaMo)B_(2).It is revealed that the disordered TM atoms result in a severe local lattice distortion and the formation of weak spots.In view of bonding charge density,it is understood that the degree of electron contribution of TM atoms directly affects the bonding strength of the metallic layer,contributing to the optimized hardness of HEBs.Moreover,the proposed power-law-scaled relationship integrating the EWF and the grain size yields an excellent agreement between our predicted results and those reported experimental ones.It is found that the HEBs exhibit relatively high hardness which is higher than those of single transition metal diborides.In particular,the hardness of(TiZrNbTaMo)B_(2)and(TiHfNbTaMo)B_(2)can be as high as29.15 and 28.02 GPa,respectively.This work provides a rapid strategy to discover/design advanced HEBs efficiently,supported by the coupling hardening mechanisms of solid solution and grain refinement based on the atomic and electronic interactions. 展开更多
关键词 High-entropy diborides(HEBs) Hardness Electronic structure Lattice distortion POWER-LAW
原文传递
Mechanical properties of hot-pressed high-entropy diboride-based ceramics 被引量:24
10
作者 Ji-Xuan Liu Xiao-Qin Shen +3 位作者 Yue Wu Fei Li Yongcheng Liang Guo-Jun Zhang 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第4期503-510,共8页
High-entropy ceramics attract more and more attention in recent years.However,mechanical properties especially strength and fracture toughness for high-entropy ceramics and their composites have not been comprehensive... High-entropy ceramics attract more and more attention in recent years.However,mechanical properties especially strength and fracture toughness for high-entropy ceramics and their composites have not been comprehensively reported.In this work,high-entropy(Ti0.2Zr0.2Hf0.2Nb0.2Ta 0.2)B2(HEB)monolithic and its composite containing 20 vol%SiC(HEB–20SiC)are prepared by hot pressing.The addition of SiC not only accelerates the densification process but also refines the microstructure of HEB,resulting in improved mechanical properties.The obtained dense HEB and HEB–20SiC ceramics hot pressed at 1800℃exhibit four-point flexural strength of 339±17 MPa and 447±45 MPa,and fracture toughness of 3.81±0.40 MPa·m1/2 and 4.85±0.33 MPa·m1/2 measured by single-edge notched beam(SENB)technique.Crack deflection and branching by SiC particles is considered to be the main toughening mechanisms for the HEB–20SiC composite.The hardness Hv0.2 of the sintered HEB and HEB–20SiC ceramics is 23.7±0.7 GPa and 24.8±1.2 GPa,respectively.With the increase of indentation load,the hardness of the sintered ceramics decreases rapidly until the load reaches about 49 N,due to the indentation size effect.Based on the current experimental investigation it can be seen that the room temperature bending strength and fracture toughness of the high-entropy diboride ceramics are within ranges commonly observed in structure ceramics. 展开更多
关键词 high-entropy ceramics high-entropy diboride flexural strength fracture toughness indentation size effect
原文传递
Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HETMB_(2)) 被引量:8
11
作者 Weiming ZHANG Fu-Zhi DAI +6 位作者 Huimin XIANG Biao ZHAO Xiaohui WANG Na NI Rajamallu KARRE Shijiang WU Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1299-1316,共18页
The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution.To cope with this challenge,exploring high-performance electromagnetic(EM)wave absorbing materials with dielect... The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution.To cope with this challenge,exploring high-performance electromagnetic(EM)wave absorbing materials with dielectric and magnetic losses coupling is urgently required.Of the EM wave absorbers,transition metal diborides(TMB2)possess excellent dielectric loss capability.However,akin to other single dielectric materials,poor impedance match leads to inferior performance.High-entropy engineering is expected to be effective in tailoring the balance between dielectric and magnetic losses through compositional design.Herein,three HE TMB2 powders with nominal equimolar TM including HE TMB2-I(TM=Zr,Hf,Nb,Ta),HE TMB2-2(TM=Ti,Zr,Hf,Nb,Ta),and HE TMB2-3(TM=Cr,Zr,Hf,Nb,Ta)have been designed and prepared by one-step boro/carbothermal reduction.As a result of synergistic effects of strong attenuation capability and impedance match,HE TMB2-1 shows much improved performance with the optimal minimum reflection loss(RL_(min))of-59.6 dB(8.48 GHz,2.68 mm)and effective absorption bandwidth(EAB)of 7.6 GHz(2.3 mm).Most impressively,incorporating Cr in HE TMB2-3 greatly improves the impedance match over 1-18 GHz,thus achieving the RLmin of-56.2 dB(8.48 GHz,2.63 mm)and the EAB of 11.0 GHz(2.2 mm),which is superior to most other EM wave absorbing materials.This work reveals that constructing high-entropy compounds,especially by incorporating magnetic elements,is effectual in tailoring the impedance match for highly conductive compounds,i.e.,tuning electrical conductivity and boosting magnetic loss to realize highly efficient and broadband EM wave absorption with dielectric and magnetic coupling in single-phase materials. 展开更多
关键词 transition metal diboride(TMB2) high-entropy(HE)ceramics electronic structure microwave absorption dielectric and magnetic losses coupling
原文传递
Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials 被引量:8
12
作者 Da LIU Honghua LIU +1 位作者 Shanshan NING Yanhui CHU 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第3期339-348,共10页
High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space,unique microstructure,and adjustable properties.Previous studies focused mainly on high-entropy n... High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space,unique microstructure,and adjustable properties.Previous studies focused mainly on high-entropy nanoparticles,while other high-entropy nanomaterials were rarely reported.Herein,we reported a new class of high-entropy nanomaterials,namely(Tao2Nbo2Ti.2Wo.2Moo2)B2 high-entropy diboride(HEB-1)nanoflowers,for the first time.Formation possibility of HEB-1 was first theoretically analyzed from two aspects of lattice size difference and chemical reaction thermodynamics.We then successfully synthesized HEB-1 nanoflowers by a facile molten salt synthesis method at 1423 K.The as-synthesized HEB-1 nanoflowers showed an interesting chrysanthemum-like morphology assembled from numerous well-aligned nanorods with diameters of 20--30 nm and lengths of 100-200 nm.Meanwhile,these nanorods possessed a single-crystalline hexagonal structure of metal diborides and highly compositional uniformity from nanoscale to microscale.In addition,the formation of the as-synthesized HEB-I nanoflowers could be well interpreted by a classical surface-contolled crystal growth theory.This work not only enriches the categories of high-entropy nanomaterials but also opens up a new research field on high-entropy diboride nanomaterials. 展开更多
关键词 high-entropy materials diborideS NANOMATERIALS molten salt synthesis
原文传递
General trends in surface stability and oxygen adsorption behavior of transition metal diborides(TMB_2) 被引量:1
13
作者 Wei Sun Fuzhi Dai +2 位作者 Huimin Xiang Jiachen Liu Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第4期584-590,共7页
The potential applications of transition metal diborides(TMB_2) in extreme environments are particularly attractive but still blocked by some intrinsic properties such as poor resistances to thermal shock and oxidatio... The potential applications of transition metal diborides(TMB_2) in extreme environments are particularly attractive but still blocked by some intrinsic properties such as poor resistances to thermal shock and oxidation. Since surface plays a key role during grain growth and oxygen adsorption, an insight into the surface properties of TMB_2 is essential for understanding the materials performance and accelerating the development of ultra-high temperature ceramics. By employing two-region modeling method, the stability and oxygen adsorption behavior of TMB_2 surfaces were investigated by first-principles calculations based on density functional theory. The effects of valance electron concentration on the surface stability and oxygen adsorption were studied and the general trends were summarized. After analyzing the anisotropy in surface stability and oxygen adsorption, the observed grain morphology of TMB_2 were well explained, and it was also predicted that YB_2, HfB_2 and TaB_2 may have better initial oxidation resistance than ZrB_2. 展开更多
关键词 Transition metal diborideS FIRST-PRINCIPLES calculation Surface energy GRAIN morphology OXIDATION resistance
原文传递
Synthesis and densification of zirconium diboride prepared by carbothermal reduction 被引量:1
14
作者 Tao Gui Xing-Ming Wang +4 位作者 Lei Yang Yu-Yang Liu Xue Bai Li-Jun Wang Bo Song 《Rare Metals》 SCIE EI CAS CSCD 2018年第12期1076-1081,共6页
Using boron powder as additive, the preparation of zirconium diboride(ZrB 2) by carbothermal reduction was investigated. The results show that the carbothermal reduction cannot be completely done until the temperature... Using boron powder as additive, the preparation of zirconium diboride(ZrB 2) by carbothermal reduction was investigated. The results show that the carbothermal reduction cannot be completely done until the temperature is more than 1900 ℃. The ZrB2 particles prepared without boron(B) additive at 1900 ℃ for 3 h are rodlike and show a preferential grain growth along [001] direction. B additive changes the heat effect of the raw materials. With B additive, the morphology of ZrB2 particles turns to be regular shape. The average particle size is about 3.6 μm with 2.5 wt% B additives. With more B additive, the shape of particles turns to be round like and the average particle size is decreased to 2.3 μm when 5 wt% B is added. The existence of oxides in grain boundary is a key factor to keep ZrB2 ceramic from deep densification. Using ZrB2 powder prepared with 5 wt% B additives, by controlling carbon content in ZrB2 powder, ZrB2 ceramic with 93%relative density is hot-pressed. 展开更多
关键词 Zirconium diboride Carbothermal reduction Grain growth Morphology control Deep densification
原文传递
TiB_2/Ni coatings on surface of copper alloy electrode prepared by electrospark deposition 被引量:13
15
作者 罗成 熊翔 董仕节 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期317-321,共5页
In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstru... In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstructures and phase compositions of TiB2 and Ni coatings were characterized by SEM and XRD. The coating hardness was measured using a microhardness tester. The results indicate that a satisfactory TiB2 coating is obtained as a result of the intermediate nickel layer acting as a good binder between the TiB2 coating and the copper alloy substrate. Owing to its capacity of deforming, the precoated nickel layer is dense and crack free, while cracks and pores are observed in the TiB2 coating. The hardness of the TiB2/Ni coating decreases with the increase of voltage and capacitance because of the diffusion of copper and nickel and the oxidation of the coating materials. Because of the good thermal and electrical conductivities and high hardness properties of TiB2, the deformation of the electrode with TiB2/Ni coating is reduced and its spot-welding life is by far prolonged than that of the uncoated one. 展开更多
关键词 titanium diboride electrospark deposition COPPER ELECTRODE NICKEL COATING
下载PDF
Electrochemical behaviors of Mg^(2+) and B^(3+) deposition in fluoride molten salts 被引量:3
16
作者 石忠宁 李敏 +3 位作者 李兰兰 高炳亮 胡宪伟 王兆文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1655-1659,共5页
By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that ... By using cyclic and linear sweep voltammetry,the electrochemical deposition behaviors of Mg^2+ and B^3+ in fluorides molten salts of KF-MgF2 and KF-KBF4 at 880℃ were investigated,respectively.The results show that the electrochemical reduction of Mg^2+ is a one-step reaction as Mg^2++2e-→Mg in KF-1%MgF2 molten salt,and the electrochemical reduction of B^3+ is also a one-step reaction as B^3++3e-→B in KF-KBF4 (1%,2% KBF4) molten salts.Both the cathodic reduction reactions of Mg^2+ and B^3+ are controlled by diffusion process.The diffusion coefficients of Mg^2+ in KF-MgF2 molten salts and B^3+ in KF-KBF4 molten salts are 6.8×10^-7 cm^2/s and 7.85×10^-7 cm^2/s,respectively.Moreover,the electrochemical synthesis of MgB2 by co-deposition of Mg and B was carried out in the KF-MgF2-KBF4 (molar ratio of 6:1:2) molten salt at 750℃.The X-ray diffraction analysis indicates that MgB2 can be deposited on graphite cathode in the KF-MgF2-KBF4 molten salt at 750℃. 展开更多
关键词 magnesium diboride ELECTRO-DEPOSITION fluoride molten salts diffusion coefficient
下载PDF
First principle study on the elastic and thermodynamic properties of TiB_2 crystal under high temperature 被引量:5
17
作者 王春雷 余本海 +2 位作者 霍海亮 陈东 孙海滨 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期1248-1252,共5页
This paper predicts the elastic and thermodynamic characteristics of TiB2 crystal through the method of density functional theory within the generalized gradient approximation (GGA). The five independent elastic con... This paper predicts the elastic and thermodynamic characteristics of TiB2 crystal through the method of density functional theory within the generalized gradient approximation (GGA). The five independent elastic constants (Cij), the bulk modulus (B0), the dependence of bulk modulus (B0) on temperature T and pressure P and the coefficient of thermal expansion (αL) at various temperatures have been evaluated and discussed. According to calculation, the bulk modulus will increase with increasing pressure while decrease with the increasing temperature. The coefficient of thermal expansion is consistent with the famous Griineisen's law when the temperature is not too high. The obtained results agree well with the experimental and other theoretical results. 展开更多
关键词 titanium diboride density functional calculations bulk modulus coefficient of heat expansion
下载PDF
Influence of B source materials on the synthesis of TiB_2-Al_2O_3 nanocomposite powders by mechanical alloying 被引量:3
18
作者 Majid Abdellahi Javad Heidari Rahman Sabouhi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1214-1220,共7页
An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was exami... An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was examined by Xray diffraction. The morphology and microstructure of the milled powders were monitored by scanning electron microscopy and transmission electron microscopy. It was found that the formation of this composite was completed after 15 and 30 h of milling time in systems (1) and (2), respectively. More milling energy was required for the formation of this composite in system (2) due to the lubricant properties of HaBO3 and also its decomposition to HBO2 and B2O3 during milling. On the basis of X-ray diffraction patterns and thermodynamic calculations, this composite was formed by highly exothermic mechanically induced self-sustaining reactions (MSR) in both systems. The MSR mode took place around 9 h and 25 h of milling in systems (1) and (2), respectively. At the end of milling (15 h for system (1) and 30 h for system (2)) the grain size of about 35-50 nm was obtained in both systems. 展开更多
关键词 NANOCOMPOSITES POWDERS ALUMINA titanium diboride mechanical alloying
下载PDF
Preparation of wettable TiB2-TiB/Ti cathode by electrolytic boronizing for aluminum electrolytic 被引量:3
19
作者 HUANG You-guo WANG Yi +2 位作者 ZHANG Xiao-hui WANG Hong-qiang LI Qing-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2681-2687,共7页
According to the problems of short life and low strength of TiB2 coating cathode for current technology in aluminium electrolysis industry,this work synthesized TiB2-TiB/Ti gradient composite with TiB2 coating and TiB... According to the problems of short life and low strength of TiB2 coating cathode for current technology in aluminium electrolysis industry,this work synthesized TiB2-TiB/Ti gradient composite with TiB2 coating and TiB whiskers in metallic Ti matrix by a electrolytic boronizing method based on similar density and thermal expansivity of the three materials.The phase composition and morphology of the cross-section were determined by X-ray diffraction(XRD),scanning electronic microscope(SEM)and X-ray energy dispersive spectrum(EDS).The results show that uniform TiB2 layer with a thickness of 8-10μm is continuously coated on the surface while the TiB whisker connected with TiB2 layer was embedded dispersedly into the matrix.The TiB crystal whisker has a maximum length of about 220μm.The growth rate of TiB2 and TiB is enhanced by the strong reduction of B4C.The novel gradient design of the composite helps to extend life and improve strength of the TiB2 cathode in aluminium electrolysis. 展开更多
关键词 aluminium electrolysis electrolytic boronizing titanium diboride gradient materials
下载PDF
Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2 被引量:2
20
作者 Yu Wang Yue-dong Wu +3 位作者 Ke-han Wu Shu-qiang Jiao Kuo-chih Chou Guo-hua Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第7期831-838,共8页
ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compar... ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the “dissolution–recrystallization” mechanism. 展开更多
关键词 ZIRCONIUM diboride borothermal reduction ultra-high temperature ceramics dissolution-recrystallization mechanism
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部