Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being...Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits.展开更多
The wavefront recording plane (WRP), subsequently generalized to be known as the virtual diffraction plane (VDP), is a recent concept that has been successfully deployed in fast generation and processing of digita...The wavefront recording plane (WRP), subsequently generalized to be known as the virtual diffraction plane (VDP), is a recent concept that has been successfully deployed in fast generation and processing of digital holograms. In brief, the WRP and its extension, the VDP, is a hypothetical plane that is located between the hologram and the object scene, and which is at close proximity to the latter. As such, the fringe patterns on the hypothetical plane are carrying the holistic information of the hologram, as well as the local optical properties of the object scene. This important property enables a hologram to be processed with classical image processing techniques that are normally unsuitable for handling holographic information. In this paper we shall review a number of works, that have been developed based on the framework of the WRP and the VDP.展开更多
Several approaches for fast generation of digital holograms of a three-dimensional (3D) object have been discussed. Among them, the novel look-up table (N-LUT) method is analyzed to dramatically reduce the number ...Several approaches for fast generation of digital holograms of a three-dimensional (3D) object have been discussed. Among them, the novel look-up table (N-LUT) method is analyzed to dramatically reduce the number of pre-calculated fringe patterns required for computation of digital holograms of a 3D object by employing a new concept of principal fringe patterns, so that problems of computational complexity and huge memory size of the conventional ray-tracing and look-up table methods have been considerably alleviated. Meanwhile, as the 3D video images have a lot of temporally or spatially redundant data in their inter- and intra-frames, computation time of the 3D video holograms could be also reduced just by removing these redundant data. Thus, a couple of computational methods for generation of 3D video holograms by combined use of the N-LUT method and data compression algorithms are also presented and discussed. Some experimental results finally reveal that by using this approach a great reduction of computation time of 3D video holograms could be achieved.展开更多
We measure the surface roughness of the mechanical parts based on digital holography. A digital off- axis hologram recording setup for reflective samples is built. Firstly, the height reconstruction error 2.3% of the ...We measure the surface roughness of the mechanical parts based on digital holography. A digital off- axis hologram recording setup for reflective samples is built. Firstly, the height reconstruction error 2.3% of the setup is calibrated by using the quartz step height standard (VLSI- SHS-880QC). Then, the standard scribed-line model and the grinding roughness specimen are selected as the test samples and their surface roughness are 0.095 6 jam and 0.025 3 jam, with errors 6.3%, 0.9%, respectively. The results are in good agreement with the given roughness parameters. At last, we also analyze the window effect of the filter on the roughness measurement value based on digital holography. In conclu- sion, the paper demonstrated effectively that the digital holography could provide the surface feature for the rough- ness measurement with high accuracy.展开更多
Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties.Digital planar holograms in particular can encode any optical transfer function with high cust...Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties.Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography.Here,we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization.The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer.While maintaining the total device footprint below 2 cm2,the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range,over a 148 nm spectral range and 926 channels.This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing.展开更多
基金supported by the National Natural Science Foundation of China (10772171 and 10732080)the National Basic Research Program of China (2007CB936803)
文摘Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits.
文摘The wavefront recording plane (WRP), subsequently generalized to be known as the virtual diffraction plane (VDP), is a recent concept that has been successfully deployed in fast generation and processing of digital holograms. In brief, the WRP and its extension, the VDP, is a hypothetical plane that is located between the hologram and the object scene, and which is at close proximity to the latter. As such, the fringe patterns on the hypothetical plane are carrying the holistic information of the hologram, as well as the local optical properties of the object scene. This important property enables a hologram to be processed with classical image processing techniques that are normally unsuitable for handling holographic information. In this paper we shall review a number of works, that have been developed based on the framework of the WRP and the VDP.
基金supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC (Informa-tion Technology Research Center)support program su-pervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2009-C1090-0902-0018)
文摘Several approaches for fast generation of digital holograms of a three-dimensional (3D) object have been discussed. Among them, the novel look-up table (N-LUT) method is analyzed to dramatically reduce the number of pre-calculated fringe patterns required for computation of digital holograms of a 3D object by employing a new concept of principal fringe patterns, so that problems of computational complexity and huge memory size of the conventional ray-tracing and look-up table methods have been considerably alleviated. Meanwhile, as the 3D video images have a lot of temporally or spatially redundant data in their inter- and intra-frames, computation time of the 3D video holograms could be also reduced just by removing these redundant data. Thus, a couple of computational methods for generation of 3D video holograms by combined use of the N-LUT method and data compression algorithms are also presented and discussed. Some experimental results finally reveal that by using this approach a great reduction of computation time of 3D video holograms could be achieved.
基金The Young Scientists Fund of the Natural Science Foundation of China(Grant No. 61107004)
文摘We measure the surface roughness of the mechanical parts based on digital holography. A digital off- axis hologram recording setup for reflective samples is built. Firstly, the height reconstruction error 2.3% of the setup is calibrated by using the quartz step height standard (VLSI- SHS-880QC). Then, the standard scribed-line model and the grinding roughness specimen are selected as the test samples and their surface roughness are 0.095 6 jam and 0.025 3 jam, with errors 6.3%, 0.9%, respectively. The results are in good agreement with the given roughness parameters. At last, we also analyze the window effect of the filter on the roughness measurement value based on digital holography. In conclu- sion, the paper demonstrated effectively that the digital holography could provide the surface feature for the rough- ness measurement with high accuracy.
基金Work at the Molecular Foundry was supported by the Office of Science,Office of Basic Energy Sciences,of the United States Department of Energy under contract DEAC02-05CH11231This study is supported by the Air Force Office of Scientific Research,Air Force Material Command,USAF,under grant/contract FA9550-12-C-0077.
文摘Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties.Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography.Here,we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization.The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer.While maintaining the total device footprint below 2 cm2,the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range,over a 148 nm spectral range and 926 channels.This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing.