The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulati...The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry.展开更多
High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrai...The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.展开更多
This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the la...This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.展开更多
This paper considers the problems of the potential development of erosion processes in the natural landscapes of northern taiga in the Russian plain. It is considered that in forest ecosystems, erosion processes are s...This paper considers the problems of the potential development of erosion processes in the natural landscapes of northern taiga in the Russian plain. It is considered that in forest ecosystems, erosion processes are slow and are weakly reflected in the terrain. However, the situation changes radically if the vegetation cover integrity is violated, which is inevitable with the modern methods of developing northern territories. Furthermore, global changes in average annual temperatures and the occurrence of karst processes may be the reason behind the development of erosion processes. The authors suggest a method for determining territories with a varying occurrence probability of erosional processes, based on digital elevation modelling. The territory of the Pinezhsky Nature Reserve(Arkhangelsk region) was chosen as the test plot. Direct field studies were previously used to detect exogenous geological processes in this territory. The authors were the first to suggest digital elevation modelling as a method that allows determining the potential danger of erosion in karst landscapes of the northern taiga. The geomorphometric studies resulted in the determination of areas with the greatest and lowest occurrence probability of erosion processes in the Pinezhsky Nature Reserve. It was established that the most significant erosion type was linear erosion, represented by incised river valleys and karst ravines. Sheet erosion is less significant and occurs as sinkholes, local declines, and chasms over the valleys of subterranean rivers.展开更多
The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the...The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.展开更多
Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the m...Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.展开更多
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly...In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.展开更多
In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is ...Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.展开更多
Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertaint...Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.展开更多
On the basis of Digital Elevation Model data, the raster flow vectors, watershed delineation, and spatial topological relationship are generated by the Martz and Garbrecht method for the upper area of Huangnizhuang st...On the basis of Digital Elevation Model data, the raster flow vectors, watershed delineation, and spatial topological relationship are generated by the Martz and Garbrecht method for the upper area of Huangnizhuang station in the Shihe Catchment with 805 km<SUP>2</SUP> of area, an intensified observation field for the HUBEX/GAME Project. Then, the Xin’anjiang Model is applied for runoff production in each grid element where rain data measured by radar at Fuyang station is utilized as the input of the hydrological model. The elements are connected by flow vectors to the outlet of the drainage catchment where runoff is routed by the Muskingum method from each grid element to the outlet according to the length between each grid and the outlet. The Nash-Sutcliffe model efficiency coefficient is 92.41% from 31 May to 3 August 1998, and 85.64%, 86.62%, 92.57%, and 83.91%, respectively for the 1st, 2nd, 3rd, and 4th flood events during the whole computational period. As compared with the case where rain-gauge data are used in simulating the hourly hydrograph at Huangnizhuang station in the Shihe Catchment, the index of model efficiency improvement is positive, ranging from 27.56% to 69.39%. This justifies the claim that radar-measured data are superior to rain-gauge data as inputs to hydrological modeling. As a result, the grid-based hydrological model provides a good platform for runoff computation when radar-measured rain data with highly spatiotemporal resolution are taken as the input of the hydrological model.展开更多
Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data...Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However...Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km^2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km^2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.展开更多
As a GIS tool,visibility analysis is used in many areas to evaluate both visible and non-visible places.Visibility analysis builds on a digital surface model describing the terrain morphology,including the position an...As a GIS tool,visibility analysis is used in many areas to evaluate both visible and non-visible places.Visibility analysis builds on a digital surface model describing the terrain morphology,including the position and shapes of all objects that can sometimes act as visibility barriers.However,some barriers,for example vegetation,may be permeable to a certain degree.Despite extensive research and use of visibility analysis in different areas,standard GIS tools do not take permeability into account.This article presents a new method to calculate visibility through partly permeable obstacles.The method is based on a quasi-Monte Carlo simulation with 100 iterations of visibility calculation.Each iteration result represents 1%of vegetation permeability,which can thus range from 1%to 100%visibility behind vegetation obstacles.The main advantage of the method is greater accuracy of visibility results and easy implementation on any GIS software.The incorporation of the proposed method in GIS software would facilitate work in many fields,such as architecture,archaeology,radio communication,and the military.展开更多
Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, is one of the most important diseases affecting wheat production in China, and the oversummering is the key stage of wheat powdery milde...Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, is one of the most important diseases affecting wheat production in China, and the oversummering is the key stage of wheat powdery mildew epidemic. The more oversummering regionalization of wheat powdery mildew has played an important role in disease prediction, prevention and control. In this study, we analyzed the correlation between oversummering data of wheat powdery mildew and the meteorological factors over the past years, and determined that temperature was the key meteorological factor influencing oversummering of wheat powdery mildew. The average temperature at which wheat powdery mildew growth was terminated(26.2°C) was used as the threshold temperature to regionalize the oversummering range of wheat powdery mildew. This regionalization was done using the GIS ordinary kriging method combined with the Digital Elevation model(DEM) of China. The results showed that annual probability of oversummering region based on Model 26.2 were consistent with the actual survey of the more summer wheat powdery mildew. Wheat powdery mildew oversummering regions in China mainly cover mountainous or high-altitude areas, and these regions form a narrow north-south oversummering zone. Oversummering regions of wheat powdery mildew is mainly concentrated in the high-altitude wheat growing areas, including northern and southern Yunnan, northwestern Guizhou, northern and southern Sichuan, northern and southern Chongqing, eastern and southern Gansu, southeastern Ningxia, northern and southern Shaanxi, central Shanxi, western Hubei, western Henan, northern and western Hebei, western Liaoning, eastern Tibet, eastern Qinghai, western Xinjiang and other regions of China.展开更多
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availab...Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.展开更多
Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dred...Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.72071179)ZJU-Sunon Joint Research Center of Smart Furniture,Zhejiang University,China.
文摘The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry.
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
基金Supported by the National Natural Science Foundation of China (No.40671158), the National 863 Program of China(No.2006AA12Z224) and the Program for New Century Excellent Talents in University (No.NCET-05-0626).
文摘The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.
文摘This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.
基金sponsored by Russian Federal Agency of Scientific Organizations within the project№0410-2014-0024?Development of a comprehensive physical and geo-environmental quantitative model of interaction(lithosphere,hydrosphere,biosphere,atmosphere and,partially,the ionosphere)in the areas of north tectonic units of the Russian Plate and assess of their impact on the environment
文摘This paper considers the problems of the potential development of erosion processes in the natural landscapes of northern taiga in the Russian plain. It is considered that in forest ecosystems, erosion processes are slow and are weakly reflected in the terrain. However, the situation changes radically if the vegetation cover integrity is violated, which is inevitable with the modern methods of developing northern territories. Furthermore, global changes in average annual temperatures and the occurrence of karst processes may be the reason behind the development of erosion processes. The authors suggest a method for determining territories with a varying occurrence probability of erosional processes, based on digital elevation modelling. The territory of the Pinezhsky Nature Reserve(Arkhangelsk region) was chosen as the test plot. Direct field studies were previously used to detect exogenous geological processes in this territory. The authors were the first to suggest digital elevation modelling as a method that allows determining the potential danger of erosion in karst landscapes of the northern taiga. The geomorphometric studies resulted in the determination of areas with the greatest and lowest occurrence probability of erosion processes in the Pinezhsky Nature Reserve. It was established that the most significant erosion type was linear erosion, represented by incised river valleys and karst ravines. Sheet erosion is less significant and occurs as sinkholes, local declines, and chasms over the valleys of subterranean rivers.
基金the Swiss National Science Foundation for the grant PP00P2_187199 of project OROG3NY.
文摘The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.
文摘Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068。
文摘In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
基金Supported by the International Foundation for Science,Stockholm,Sweden (No.C/3402-1)
文摘Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.
基金supported by the Professional Development Award of the University of Tennessee
文摘Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.
基金The research is jointly supported financially by the National Natural Science Foundation of China under Grant No. 40171016 and 49794030.
文摘On the basis of Digital Elevation Model data, the raster flow vectors, watershed delineation, and spatial topological relationship are generated by the Martz and Garbrecht method for the upper area of Huangnizhuang station in the Shihe Catchment with 805 km<SUP>2</SUP> of area, an intensified observation field for the HUBEX/GAME Project. Then, the Xin’anjiang Model is applied for runoff production in each grid element where rain data measured by radar at Fuyang station is utilized as the input of the hydrological model. The elements are connected by flow vectors to the outlet of the drainage catchment where runoff is routed by the Muskingum method from each grid element to the outlet according to the length between each grid and the outlet. The Nash-Sutcliffe model efficiency coefficient is 92.41% from 31 May to 3 August 1998, and 85.64%, 86.62%, 92.57%, and 83.91%, respectively for the 1st, 2nd, 3rd, and 4th flood events during the whole computational period. As compared with the case where rain-gauge data are used in simulating the hourly hydrograph at Huangnizhuang station in the Shihe Catchment, the index of model efficiency improvement is positive, ranging from 27.56% to 69.39%. This justifies the claim that radar-measured data are superior to rain-gauge data as inputs to hydrological modeling. As a result, the grid-based hydrological model provides a good platform for runoff computation when radar-measured rain data with highly spatiotemporal resolution are taken as the input of the hydrological model.
文摘Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20010203)
文摘Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km^2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km^2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.
基金This work was financially supported by project 133/2016/RPP-TO-1/b“Teaching of advanced techniques for geodata processing for follow-up study of geoinformatics”.
文摘As a GIS tool,visibility analysis is used in many areas to evaluate both visible and non-visible places.Visibility analysis builds on a digital surface model describing the terrain morphology,including the position and shapes of all objects that can sometimes act as visibility barriers.However,some barriers,for example vegetation,may be permeable to a certain degree.Despite extensive research and use of visibility analysis in different areas,standard GIS tools do not take permeability into account.This article presents a new method to calculate visibility through partly permeable obstacles.The method is based on a quasi-Monte Carlo simulation with 100 iterations of visibility calculation.Each iteration result represents 1%of vegetation permeability,which can thus range from 1%to 100%visibility behind vegetation obstacles.The main advantage of the method is greater accuracy of visibility results and easy implementation on any GIS software.The incorporation of the proposed method in GIS software would facilitate work in many fields,such as architecture,archaeology,radio communication,and the military.
基金financially supported by the National Natural Science Foundation of China(31271987)the National key Research and Development Program of China(2016YFD0300702)the Special Fund for Agro-scientific Research in the Public Interest,China(201303016)
文摘Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, is one of the most important diseases affecting wheat production in China, and the oversummering is the key stage of wheat powdery mildew epidemic. The more oversummering regionalization of wheat powdery mildew has played an important role in disease prediction, prevention and control. In this study, we analyzed the correlation between oversummering data of wheat powdery mildew and the meteorological factors over the past years, and determined that temperature was the key meteorological factor influencing oversummering of wheat powdery mildew. The average temperature at which wheat powdery mildew growth was terminated(26.2°C) was used as the threshold temperature to regionalize the oversummering range of wheat powdery mildew. This regionalization was done using the GIS ordinary kriging method combined with the Digital Elevation model(DEM) of China. The results showed that annual probability of oversummering region based on Model 26.2 were consistent with the actual survey of the more summer wheat powdery mildew. Wheat powdery mildew oversummering regions in China mainly cover mountainous or high-altitude areas, and these regions form a narrow north-south oversummering zone. Oversummering regions of wheat powdery mildew is mainly concentrated in the high-altitude wheat growing areas, including northern and southern Yunnan, northwestern Guizhou, northern and southern Sichuan, northern and southern Chongqing, eastern and southern Gansu, southeastern Ningxia, northern and southern Shaanxi, central Shanxi, western Hubei, western Henan, northern and western Hebei, western Liaoning, eastern Tibet, eastern Qinghai, western Xinjiang and other regions of China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41471316,41401456)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD(Grant No.164320H101)+1 种基金Major University Science Research Project of Jiangsu Province(Grant No.13KJA170001)the financial support provided by the PhD Scholarship from Eurasic Pacific Uninet for collaboration research in Austria
文摘Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.
基金Supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51021004)National Natural Science Foundation of China(No. 50879056)National Key Technologies R&D Program in the 12th Five-Year Plan of China(No. 2011BAB10B06)
文摘Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.