期刊文献+
共找到2,803篇文章
< 1 2 141 >
每页显示 20 50 100
Higher-dimensional Chen-Lee-Liu equation and asymmetric peakon soliton
1
作者 韩巧红 贾曼 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期224-229,共6页
Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integra... Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found. 展开更多
关键词 higher dimensional Chen-Lee-Liu equation Lax integrable system deformation algorithm implicit traveling wave solutions
下载PDF
Use of the epitaxial MTBs as a 1D gate(Lg=0.4 nm)for the construction of scaling down two-dimensional field-effect transistors
2
作者 Youla Yang Daixuan Wu +1 位作者 He Tian Tian-Ling Ren 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期1-2,共2页
In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogeni... In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2]. 展开更多
关键词 silver EPITAXIAL dimensional
下载PDF
Tuning synergy between nickel and iron in Ruddlesden-Popper perovskites through controllable crystal dimensionalities towards enhanced oxygenevolving activity and stability
3
作者 Haijuan Zhang Daqin Guan +4 位作者 Yuxing Gu Hengyue Xu Chunchang Wang Zongping Shao Youmin Guo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期113-123,共11页
Ni-Fe-based oxides are among the most promising catalysts developed to date for the bottleneck oxygen evolution reaction(OER)in water electrolysis.However,understanding and mastering the synergy of Ni and Fe remain ch... Ni-Fe-based oxides are among the most promising catalysts developed to date for the bottleneck oxygen evolution reaction(OER)in water electrolysis.However,understanding and mastering the synergy of Ni and Fe remain challenging.Herein,we report that the synergy between Ni and Fe can be tailored by crystal dimensionality of Ni,Fe-contained Ruddlesden-Popper(RP)-type perovskites(La_(0.125)Sr_(0.875))n+1(Ni_(0.25)Fe_(0.75))nO3n+1(n=1,2,3),where the material with n=3 shows the best OER performance in alkaline media.Soft X-ray absorption spectroscopy spectra before and after OER reveal that the material with n=3 shows enhanced Ni/Fe-O covalency to boost the electron transfer as compared to those with n=1 and n=2.Further experimental investigations demonstrate that the Fe ion is the active site and the Ni ion is the stable site in this system,where such unique synergy reaches the optimum at n=3.Besides,as n increases,the proportion of unstable rock-salt layers accordingly decreases and the leaching of ions(especially Sr^(2+))into the electrolyte is suppressed,which induces a decrease in the leaching of active Fe ions,ultimately leading to enhanced stability.This work provides a new avenue for rational catalyst design through the dimensional strategy. 展开更多
关键词 crystal dimensionalities oxygen evolution reaction Ruddlesden-Popper perovskites SYNERGY
下载PDF
Special Section on High-Dimensional Signal Processing
4
《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期F0002-F0002,共1页
Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportu... Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportunities to enhance the performance of signal processing in such applications and even motivate new ones.However,the curse of dimensionality is always a challenge when processing such high-dimensional signals.In practical tasks,high-dimensional signals need to be acquired,processed,and analyzed with high accuracy,robustness,and computational efficiency.This special section aims to address these challenges,where articles attempt to develop new theories and methods that are best suited to the high dimensional nature of the signals involved,and explore modern and emerging applications in this area. 展开更多
关键词 SIGNAL MASSIVE dimensionality
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
5
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
DOA estimation of high-dimensional signals based on Krylov subspace and weighted l_(1)-norm
6
作者 YANG Zeqi LIU Yiheng +4 位作者 ZHANG Hua MA Shuai CHANG Kai LIU Ning LYU Xiaode 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期532-540,F0002,共10页
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc... With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment. 展开更多
关键词 direction of arrival(DOA) compressed sensing(CS) Krylov subspace l_(1)-norm dimensionality reduction
下载PDF
Numerical Investigation of Thermal Behavior of CNC Machine Tool and Its Effects on Dimensional Accuracy of Machined Parts
7
作者 Erick Matezo-Ngoma Abderrazak El Ouafi Ahmed Chebak 《Journal of Software Engineering and Applications》 2024年第8期617-637,共21页
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in... The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%. 展开更多
关键词 CNC Machine Tool dimensional Accuracy Thermal Errors Error Modelling Numerical Simulation Finite Element Method Artificial Neural Network Error Compensation
下载PDF
Further Analysis of Machine Tool Dimensional Accuracy and Thermal Stability under Varying Floor Temperature
8
作者 Joel Arumun Shadrack Abiola 《World Journal of Engineering and Technology》 2024年第2期258-273,共16页
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d... Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool. 展开更多
关键词 dimensional Accuracy Machine Tool Machine Floor Thermal Stability TEMPERATURE Thermal Deviation
下载PDF
3-Dimensional Kinematic Comparison of Arm Movements between an Individual with NGLY1 Deficiency and a Neurotypical Individual
9
作者 Charles S. Layne Christopher A. Malaya +6 位作者 Brock Futrell Dacia Martinez Diaz Christian Alfaro Hannah E. Gustafson Subhalakshmi Chandrasekaran Rhea M. Phatak Bernhard Suter 《Case Reports in Clinical Medicine》 2024年第4期122-146,共25页
NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems ... NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems with tear formation. Movements are hyperkinetic and may include dysmetric, choreo-athetoid, myoclonic and dystonic movement elements. To date, there have been no quantitative reports describing arm movements of individuals with NGLY1 Deficiency. This report provides quantitative information about a series of arm movements performed by an individual with NGLY1 Deficiency and an aged-matched neurotypical participant. Three categories of arm movements were tested: 1) open ended reaches without specific end point targets;2) goal-directed reaches that included grasping an object;3) picking up small objects from a table placed in front of the participants. Arm movement kinematics were obtained with a camera-based motion analysis system and “initiation” and “maintenance” phases were identified for each movement. The combination of the two phases was labeled as a “complete” movement. Three-dimensional analysis techniques were used to quantify the movements and included hand trajectory pathlength, joint motion area, as well as hand trajectory and joint jerk cost. These techniques were required to fully characterize the movements because the NGLY1 individual was unable to perform movements only in the primary plane of progression instead producing motion across all three planes of movement. The individual with NGLY1 Deficiency was unable to pick up objects from a table or effectively complete movements requiring crossing the midline. The successfully completed movements were analyzed using the above techniques and the results of the two participants were compared statistically. Almost all comparisons revealed significant differences between the two participants, with a notable exception of the 3D initiation area as a percentage of the complete movement. The statistical tests of these measures revealed no significant differences between the two participants, possibly suggesting a common underlying motor control strategy. The 3D techniques used in this report effectively characterized arm movements of an individual with NGLY1 deficiency and can be used to provide information to evaluate the effectiveness of genetic, pharmacological, or physical rehabilitation therapies. 展开更多
关键词 NGLY1 Deficiency Developmental Disorders KINEMATICS 3 dimensional Analyses
下载PDF
Numerical Study of a Three-Dimensional Laminar Flow in a Rectangular Channel with a 180-Degree Sharp Turn
10
作者 Takashi Yoshida 《Open Journal of Fluid Dynamics》 2024年第3期147-162,共16页
This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re ... This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn. 展开更多
关键词 180-Degree Sharp Turn Channel Three dimensional Steady Flow Limiting Streamline Topological Theory
下载PDF
A novel box-counting method for quantitative fractal analysis of threedimensional pore characteristics in sandstone
11
作者 Huiqing Liu Heping Xie +2 位作者 Fei Wu Cunbao Li Renbo Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期479-489,共11页
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi... Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks. 展开更多
关键词 3D fractal analysis Fractal dimension Rock pore structure Box-counting method Permeability simulation Computational geosciences
下载PDF
A Dimensional Reduction Approach Based on Essential Constraints in Linear Programming
12
作者 Eirini I. Nikolopoulou George S. Androulakis 《American Journal of Operations Research》 2024年第1期1-31,共31页
This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted av... This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted average and the cosine simplex algorithm. The first approach identifies binding constraints by using the weighted average of each constraint, whereas the second algorithm is based on the cosine similarity between the vector of the objective function and the constraints. These two approaches are complementary, and when used together, they locate the essential subset of initial constraints required for solving medium and large-scale linear programming problems. After reducing the dimension of the linear programming problem using the subset of the essential constraints, the solution method can be chosen from any suitable method for linear programming. The proposed approach was applied to a set of well-known benchmarks as well as more than 2000 random medium and large-scale linear programming problems. The results are promising, indicating that the new approach contributes to the reduction of both the size of the problems and the total number of iterations required. A tree-based classification model also confirmed the need for combining the two approaches. A detailed numerical example, the general numerical results, and the statistical analysis for the decision tree procedure are presented. 展开更多
关键词 Linear Programming Binding Constraints Dimension Reduction Cosine Similarity Decision Analysis Decision Trees
下载PDF
Dimensionality reduction model based on integer planning for the analysis of key indicators affecting life expectancy
13
作者 Wei Cui Zhiqiang Xu Ren Mu 《Journal of Data and Information Science》 CSCD 2023年第4期102-124,共23页
Purpose:Exploring a dimensionality reduction model that can adeptly eliminate outliers and select the appropriate number of clusters is of profound theoretical and practical importance.Additionally,the interpretabilit... Purpose:Exploring a dimensionality reduction model that can adeptly eliminate outliers and select the appropriate number of clusters is of profound theoretical and practical importance.Additionally,the interpretability of these models presents a persistent challenge.Design/methodology/approach:This paper proposes two innovative dimensionality reduction models based on integer programming(DRMBIP).These models assess compactness through the correlation of each indicator with its class center,while separation is evaluated by the correlation between different class centers.In contrast to DRMBIP-p,the DRMBIP-v considers the threshold parameter as a variable aiming to optimally balances both compactness and separation.Findings:This study,getting data from the Global Health Observatory(GHO),investigates 141 indicators that influence life expectancy.The findings reveal that DRMBIP-p effectively reduces the dimensionality of data,ensuring compactness.It also maintains compatibility with other models.Additionally,DRMBIP-v finds the optimal result,showing exceptional separation.Visualization of the results reveals that all classes have a high compactness.Research limitations:The DRMBIP-p requires the input of the correlation threshold parameter,which plays a pivotal role in the effectiveness of the final dimensionality reduction results.In the DRMBIP-v,modifying the threshold parameter to variable potentially emphasizes either separation or compactness.This necessitates an artificial adjustment to the overflow component within the objective function.Practical implications:The DRMBIP presented in this paper is adept at uncovering the primary geometric structures within high-dimensional indicators.Validated by life expectancy data,this paper demonstrates potential to assist data miners with the reduction of data dimensions.Originality/value:To our knowledge,this is the first time that integer programming has been used to build a dimensionality reduction model with indicator filtering.It not only has applications in life expectancy,but also has obvious advantages in data mining work that requires precise class centers. 展开更多
关键词 Integer programming Multidimensional data dimensionality reduction Life expectancy
下载PDF
THUDosePD:a three-dimensional Monte Carlo platform for phantom dose assessment 被引量:2
14
作者 Xi‑Yu Luo Rui Qiu +4 位作者 Zhen Wu Shu‑Chang Yan Zi‑Yi Hu Hui Zhang Jun‑Li Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期40-50,共11页
Monte Carlo simulations are frequently utilized in radiation dose assessments.However,many researchers find the prevailing computing platforms to be intricate.This highlights a pressing need for a specialized framewor... Monte Carlo simulations are frequently utilized in radiation dose assessments.However,many researchers find the prevailing computing platforms to be intricate.This highlights a pressing need for a specialized framework for phantom dose evalua-tion.To address this gap,we developed a user-friendly radiation dose assessment platform using the Monte Carlo toolkit,Geant4.The Tsinghua University Phantom Dose(THUDosePD)augments the flexibility of Monte Carlo simulations in dosi-metric research.Originating from THUDose,a code with generic,functional,and application layers,THUDosePD focuses predominantly on anatomical phantom dose assessment.Additionally,it enables medical exposure simulation,intricate geometry creation,and supports both three-dimensional radiation dose analysis and phantom format transformations.The system operates on a multi-threaded parallel CPU architecture,with some modules enhanced for GPU parallel computing.Benchmark tests on the ICRP reference male illustrated the capabilities of THUDosePD in phantom dose assessment,covering the effective dose,three-dimensional dose distribution,and three-dimensional organ dose.We also conducted a voxelization conversion on the polygon mesh phantom,demonstrating the method’s efficiency and consistency.Extended applications based on THUDosePD further underline its broad adaptability.This intuitive,three-dimensional platform stands out as a valuable tool for phantom radiation dosimetry research. 展开更多
关键词 Monte Carlo PHANTOM Dose assessment VOXELIZATION Three dimensional
下载PDF
Earth Pressure of the Trapdoor Problem Using Three-Dimensional Discrete Element Method 被引量:1
15
作者 Qizhi Chen ChuliXu +3 位作者 Baoping Zou Zhanyou Luo Changjie Xu Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1503-1520,共18页
Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor ... Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone. 展开更多
关键词 Soil arching effect three dimensional discrete element earth pressure contact force chain
下载PDF
Dimensionality regulation in tin halide perovskite solar cells: Toward high performance and stability
16
作者 Huanhuan Yao Shurong Wang +2 位作者 Zhiwen Jin Liming Ding Feng Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期144-156,I0005,共14页
Tin halide perovskites(THPs)have received extensive attention due to their low toxicity and excellent optoelectronic properties,and are considered to be the most promising alternatives to develop efficient lead-free p... Tin halide perovskites(THPs)have received extensive attention due to their low toxicity and excellent optoelectronic properties,and are considered to be the most promising alternatives to develop efficient lead-free perovskite solar cells.However,due to the unique and inherent characteristics of Sn^(2+)being easily oxidized to Sn^(4+)and fast crystallization,tin perovskite solar cells(TPSCs)show relatively poor performance and stability,compared to the lead counterparts.Recently,the introduction of bulky organic spacers into three-dimensional(3D)THPs for dimensional regulation can not only prevent the intrusion of water and oxygen,but also inhibit the self-doping effect and ion migration.In this review,we will detail how dimensional regulation enables TPSCs with high performance and superior stability.First,we summarize the intrinsic properties of THPs and analyze the root causes of their poor performance and instability.Next,we discuss the specific structure and types of the dimensional regulation strategy.Then,the mechanism of dimensional regulation is discussed in detail,mainly from inhibiting the Sn^(2+)oxidation,optimizing crystallization,passivating defects,and improving energy level alignment.Finally,future challenges and prospects for dimensional regulation are elaborated to help researchers develop more efficient and stable TPSCs. 展开更多
关键词 Organic spacers dimensional regulation Long-term stability Performance Photovoltaics
下载PDF
Two dimensional MoS_(2) finding its way towards constructing high-performance alkaline recovery membranes
17
作者 Xinxin Li Hongwei Shao +4 位作者 Shichao Zhang Yong Li Jingjing Gu Qiang Huang Jin Ran 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期155-164,共10页
The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar mem... The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar membranes with sub-nanometer wide channels are promising candidates for discerning OH^(-)and other anions.Here,we report the development of alkaline recycling membranes through stacking MoS_(2) nanosheets.Benefiting from the ordered and narrow 2D channels,MoS_(2) membranes show excellent alkaline recovery performances.The OH^(-)dialysis coefficient (U_(OH)-) and separation factor (S)towards simulated OH^(-) and WO_(4)^(2-) across the 500 nm thick MoS_(2) laminates reach 6.9×10^(-3)m·h^(-1)and 34.3 respectively.Furthermore,the chemical environments of MoS_(2) laminates were modulated by intercalating ionic poly(sodium 4-styrene sulfonate)(PSS@MoS_(2)).The U_(OH)-and S values of PSS@MoS_(2) membrane further improve to 11.7×10^(-3)m·h^(-1)and 49.8 respectively.Besides,both MoS_(2) and PSS@MoS_(2) membranes exhibit promising stability. 展开更多
关键词 Alkaline recovery Diffusion dialysis Two dimensional membranes MoS_(2) Poly(sodium 4-styrene sulfonate)
下载PDF
An improved four-dimensional variation source term inversion model with observation error regularization
18
作者 Chao-shuai Han Xue-zheng Zhu +3 位作者 Jin Gu Guo-hui Yan Xiao-hui Gao Qin-wen Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期349-360,共12页
Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an impr... Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%. 展开更多
关键词 Source term inversion Four dimensional variation Observation error regularization factor Bayesian optimization SF6 tracer test
下载PDF
Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve
19
作者 Cheng-Jian Xiao Guang-Wei Meng Ying-Kui Zhao 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2023年第2期67-75,共9页
A semi-analytical model is constructed to investigate two-dimensional radiation heat waves(Marshak waves)in a low-Z foam cylinder with a sleeve made of high-Z material.In this model,the energy loss to the high-Z wall ... A semi-analytical model is constructed to investigate two-dimensional radiation heat waves(Marshak waves)in a low-Z foam cylinder with a sleeve made of high-Z material.In this model,the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored.The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss.The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations.The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport. 展开更多
关键词 material. CYLINDER dimensional
下载PDF
Theoretical Predition of Two-dimensional SiGeP_(2)by the Global Optimization Method
20
作者 XUE Xiao YU Jiahui +1 位作者 ZHOU Dawei PU Chunying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1010-1016,共7页
The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional(2D)SiGeP_(2).Two newly found str... The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional(2D)SiGeP_(2).Two newly found structures(P3m1 and Pmm2)are predicted.The unbiased global search reveals that the two lowest-energy structures are honeycomb lattices with robust dynamical stabilities.A more accurate Heyd-Scuseria-Ernzerhof(HSE06)hybrid functional is used to estimate the band structures of SiGeP_(2),which indicates that both the structures are semiconductors with indirect band-gap energies 1.80 e V for P3m1 and1.93 e V for Pmm^(2),respectively.Using the deformation potential theory,the P3m1-SiGeP_(2)is predicted to have high electron mobilities(6.4×10^(4)along zigzag direction and 2.9×10^(3)cm^(2)·V^(-1)·s^(-1)along armchair direction,respectively)and hole electron mobilities(1.0×10^(3)along zigzag direction and 2.5×10^(3)cm^(2)·V^(-1)·s^(-1)along armchair direction,respectively),which can be comparable with that of phosphorene and show anisotropic character in-plane.In addition,to estimate the elastic limit of SiGeP_(2),we also calculated the surface tension of SiGeP_(2)as a function of tensile strain.Our results show that the 2D SiGeP_(2)may be good candidaticates for applications in nanoelectronic devices. 展开更多
关键词 two dimensional SiGeP_(2) the first-principles carrier mobility
下载PDF
上一页 1 2 141 下一页 到第
使用帮助 返回顶部