Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber ca...Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leu-cospilota in an animal model of liver cancer caused by dimethyl nitrosamine(DMN)was studied.Methods:Wistar female rats were randomly divided into five groups(n=12):control(intact),positive control(received 1%DMN[10 mg/kg/week,intraperitoneally]for 12 weeks),and three treatment groups(received 50,100,and 200 mg/kg/day H.leu-cospilota extract orally for 12 weeks along with intraperitoneal administration of 1%DMN[10 mg/kg/week]).In all groups,ultrasound was performed on the liver every week to check its density.Blood sampling and liver isolation were performed on three occasions,at 4,8,and 12 weeks,to check liver enzymes and the histopathological condition of the liver tissue(every week,four animals from each group were randomly selected).Results:Liver density changes were evident from the eighth week onward in the positive control group.Histopathological results indicated pathologic changes in the positive control group after 4 weeks.The increase in liver enzymes in the posi-tive control group was significantly different from that in the treatment and control groups.Conclusions:We demonstrated the hepatoprotective effect of H.leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography.More additional research(in silico or in vitro)is needed to find the exact mechanism and the main biological compound in H.leucospilota.展开更多
The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts ...The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.展开更多
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle...Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.展开更多
In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-...In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.展开更多
In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion w...In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion was 33.5% and the dimethyl carbonate(DMC)selectivity was up to 92,4% at 443 K and in 9 h.The prepared catalysts were well characterized to investigate the effect on the catalytic performance and reaction catalysis mechanism.The experimental results show that the addition of La adjusted the structure and chemical properties of ZnAl composite oxide and that the synergistic effect among Zn,Al and La play a key role in adjusting the acid-base properties and stability of the catalyst,which definitely improved the DMC selectivity and catalytic stability.Based on the proposed reaction mechanism,two kinetic models of the catalytic reaction were established and modified:LangmuirHinshelwood and power-rate law kinetic model.The good agreement between kinetic models and experimental data showed that the power-rate law kinetic model based on the elementary reactions is a suitable model for providing a theoretical basis.The pre-exponential factor and activation energy of the main reaction are 5.77×10^(7)and 77.60 kJ·mol^(-1),respectively.展开更多
The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 ...The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 dimethyl γ butyrolactone,were obtained from diethyl malonate and 2,3 epoxybutane.2 Methyl octan 1 yl lithium reacted with 3,4 dimethyl γ butyrolactone to yield the ketoalcohol and then followed by Huang Minlong reduction to afford 3,7 dimethyl 2 tridecanol,acylated with acetic anhydide to give 3,7 dimethyl 2 tridecanyl acetate.展开更多
Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wet...Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.展开更多
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithi...A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.展开更多
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budge...The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radioactive energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.展开更多
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is ...Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.展开更多
The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical proces...The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.展开更多
The activities of dimethyl carbonate and dimethyl sulfate as a methylation reagent were studied by density- functional theory (DFT). B3LYP/6-31G(d, p) methods were used to optimize the structures of dirnethyl carb...The activities of dimethyl carbonate and dimethyl sulfate as a methylation reagent were studied by density- functional theory (DFT). B3LYP/6-31G(d, p) methods were used to optimize the structures of dirnethyl carbonate and dimethyl sulfate and calculate theirs charge densities. Dimethyl sulfate is easier than dimethyl carbonate to react with a nucleophUic reagent. In dimethyl sulfate, the alkoxy carbons are the only reactive atomic nucleus because of steric hindrance. A nucleophilic reagent is more likely to react with carbonyl carbons than alkoxy carbons of dimethyl carbonate; in the presence of a Lewis acid, the phenyl nucleophilic reagent reacts with the Lewis acid first. Lewis acid increases the negative charge density of a nucleophUic reagent in polar solvent, and also incurs an accretion of steric hindrance. Polar solvent avails to ionize dimethyl carbonate and thus enables the reaction of methylation. The frequencies of transition state calculated by Gaussion 03 confirm the inferred reaction mechanism. The harvest rates of 4-methoxyphenol in the experiments of methylation reactions of hydroquinone with respectively dimethyl carbonate and dimethyl sulfate support the foregoing theortical conclusions.展开更多
An efficient synthesis of 2,6-pyridine dimethyl formate happened under the microwave irradiation is proposed. It is noteworthy that some factors influence the product yield such as time, temperature, ratio of reactant...An efficient synthesis of 2,6-pyridine dimethyl formate happened under the microwave irradiation is proposed. It is noteworthy that some factors influence the product yield such as time, temperature, ratio of reactants, and acidity which were discussed. The optimized quantity of 2,6-pyridine dimethyl acid is 10 mmol and methanol is 25 mmol. The yield is up to 95%-96% when using 2 mL 30% sulfuric acid. All products have been characterized by IR and 1H NMR.展开更多
An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dynamics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. An...An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dynamics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. And there are traditional strong hydrogen bonds and weak C-H- ~ ~ O contacts existing in the mixtures according to the analysis of the radial distribution functions. The insight structures in the DMSO-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Interestingly, the molar fraction of DMSO 0.35 is found to be a special concentration by the network. It is the transitional region which is from the water rich region to the DMSO rich region. The stable aggregates of (DMSO)m'S=O…… HW-OW-(H20)n might play a key role in this region. Moreover, the simulation is compared with the chemical shifts in NMR and wavenumbers in IR with concentration dependence. And the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data in NMR and IR spectra.展开更多
Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ...Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.展开更多
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
文摘Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leu-cospilota in an animal model of liver cancer caused by dimethyl nitrosamine(DMN)was studied.Methods:Wistar female rats were randomly divided into five groups(n=12):control(intact),positive control(received 1%DMN[10 mg/kg/week,intraperitoneally]for 12 weeks),and three treatment groups(received 50,100,and 200 mg/kg/day H.leu-cospilota extract orally for 12 weeks along with intraperitoneal administration of 1%DMN[10 mg/kg/week]).In all groups,ultrasound was performed on the liver every week to check its density.Blood sampling and liver isolation were performed on three occasions,at 4,8,and 12 weeks,to check liver enzymes and the histopathological condition of the liver tissue(every week,four animals from each group were randomly selected).Results:Liver density changes were evident from the eighth week onward in the positive control group.Histopathological results indicated pathologic changes in the positive control group after 4 weeks.The increase in liver enzymes in the posi-tive control group was significantly different from that in the treatment and control groups.Conclusions:We demonstrated the hepatoprotective effect of H.leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography.More additional research(in silico or in vitro)is needed to find the exact mechanism and the main biological compound in H.leucospilota.
文摘The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.
基金supported by National Natural Science Foundation of China (No.22102147 and 22002151)State Key Laboratory of Chemical Engineering (No.SKL-ChE-22A02)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ21B030009the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA29050300)Qinchuang Yuan high-level innovation and entrepreneurship talents implementing project (No.QCYRCXM-2022-177)。
文摘Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.
基金Ariel UniversityIsrael National Research Center for Electrochemical PropulsionNew Technologies Research Centre,University of West Bohemia,Pilsen for financially supporting this research。
文摘In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.
基金The financial support from the National Natural Science Foundation of China(22178089)。
文摘In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion was 33.5% and the dimethyl carbonate(DMC)selectivity was up to 92,4% at 443 K and in 9 h.The prepared catalysts were well characterized to investigate the effect on the catalytic performance and reaction catalysis mechanism.The experimental results show that the addition of La adjusted the structure and chemical properties of ZnAl composite oxide and that the synergistic effect among Zn,Al and La play a key role in adjusting the acid-base properties and stability of the catalyst,which definitely improved the DMC selectivity and catalytic stability.Based on the proposed reaction mechanism,two kinetic models of the catalytic reaction were established and modified:LangmuirHinshelwood and power-rate law kinetic model.The good agreement between kinetic models and experimental data showed that the power-rate law kinetic model based on the elementary reactions is a suitable model for providing a theoretical basis.The pre-exponential factor and activation energy of the main reaction are 5.77×10^(7)and 77.60 kJ·mol^(-1),respectively.
基金Supported by Foundation for University Key Teacher by the Min-istry of Education
文摘The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 dimethyl γ butyrolactone,were obtained from diethyl malonate and 2,3 epoxybutane.2 Methyl octan 1 yl lithium reacted with 3,4 dimethyl γ butyrolactone to yield the ketoalcohol and then followed by Huang Minlong reduction to afford 3,7 dimethyl 2 tridecanol,acylated with acetic anhydide to give 3,7 dimethyl 2 tridecanyl acetate.
文摘Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
文摘A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.
基金Supported by the Nantong University Research Funding (No. 09R02)
文摘The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radioactive energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.
基金the National High Technology Research and Development Program of China(No.2003AA321010).
文摘Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.
基金the National High Technology Research and Development Program of China(No 2003AA321010)
文摘The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.
文摘The activities of dimethyl carbonate and dimethyl sulfate as a methylation reagent were studied by density- functional theory (DFT). B3LYP/6-31G(d, p) methods were used to optimize the structures of dirnethyl carbonate and dimethyl sulfate and calculate theirs charge densities. Dimethyl sulfate is easier than dimethyl carbonate to react with a nucleophUic reagent. In dimethyl sulfate, the alkoxy carbons are the only reactive atomic nucleus because of steric hindrance. A nucleophilic reagent is more likely to react with carbonyl carbons than alkoxy carbons of dimethyl carbonate; in the presence of a Lewis acid, the phenyl nucleophilic reagent reacts with the Lewis acid first. Lewis acid increases the negative charge density of a nucleophUic reagent in polar solvent, and also incurs an accretion of steric hindrance. Polar solvent avails to ionize dimethyl carbonate and thus enables the reaction of methylation. The frequencies of transition state calculated by Gaussion 03 confirm the inferred reaction mechanism. The harvest rates of 4-methoxyphenol in the experiments of methylation reactions of hydroquinone with respectively dimethyl carbonate and dimethyl sulfate support the foregoing theortical conclusions.
文摘An efficient synthesis of 2,6-pyridine dimethyl formate happened under the microwave irradiation is proposed. It is noteworthy that some factors influence the product yield such as time, temperature, ratio of reactants, and acidity which were discussed. The optimized quantity of 2,6-pyridine dimethyl acid is 10 mmol and methanol is 25 mmol. The yield is up to 95%-96% when using 2 mL 30% sulfuric acid. All products have been characterized by IR and 1H NMR.
文摘An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dynamics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. And there are traditional strong hydrogen bonds and weak C-H- ~ ~ O contacts existing in the mixtures according to the analysis of the radial distribution functions. The insight structures in the DMSO-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Interestingly, the molar fraction of DMSO 0.35 is found to be a special concentration by the network. It is the transitional region which is from the water rich region to the DMSO rich region. The stable aggregates of (DMSO)m'S=O…… HW-OW-(H20)n might play a key role in this region. Moreover, the simulation is compared with the chemical shifts in NMR and wavenumbers in IR with concentration dependence. And the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data in NMR and IR spectra.
基金supported by the National Natural Science Foundation of China(2137312021471022)+5 种基金the Development of Science and Technology Plan of Jilin ProvinceChina(2010154920130102001JC)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT13022)of Chinathe Program of Jilin Provincial Education Department(20131302013146)~~
文摘Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.