A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric ...A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.展开更多
A Li-B alloy has been prepared using a pretreated amorphous B powder and pure Li ingot as starting materials by continually slow addition of B powder and intensified stirring in the process of melting. The microstruct...A Li-B alloy has been prepared using a pretreated amorphous B powder and pure Li ingot as starting materials by continually slow addition of B powder and intensified stirring in the process of melting. The microstructure and the discharge characteristic of the materials have been investigated- Results show that the problem of temperature control in synthesis would be modified by means of continual addition of B powder, the Li7B6 would be more finely distributed in the metal Li by means of intensified stirring. The discharge characteristic of the Li-B alloy using amorphous B as starting materials is almost the same with that of using crystalline B.展开更多
Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This...Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This paper describes the discharge characteristics of different types of air terminals,two of which are quite similar to the ESE-type dynasphere,and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.展开更多
In this study,we investigated the effects of the quartz tube diameter,air flow rate,and applied voltage on the characteristics of an air plasma jet to obtain the optimized discharge characteristics.The physicochemical...In this study,we investigated the effects of the quartz tube diameter,air flow rate,and applied voltage on the characteristics of an air plasma jet to obtain the optimized discharge characteristics.The physicochemical properties and concentration of reactive oxygen and nitrogen species(RONS)in plasma-activated medium(PAM)were characterized to explore their chemical activity.Furthermore,we investigated the inactivation effect of air plasma jet on tumour cells and their corresponding inactivation mechanism.The results show that the tube diameter plays an important role in sustaining the voltage of the air plasma jet,and the gas flow rate affects the jet length and discharge intensity.Additionally,the air plasma jet discharge displays two modes,namely,ozone and nitrogen oxide modes at high and low gas flow rates,respectively.Increasing the voltage increases the concentration of reactive species and the length of discharge.By evaluating the viability of A549 cells under different parameters,the optimal treatment conditions were determined to be a quartz tube diameter of 4 mm,gas flow rate of 0.5 SLM,and voltage of 18 k V.Furthermore,an air plasma jet under the optimized conditions effectively enhanced the chemical activity in PAM and produced more aqueous RONS.The air plasma jet induced significant cytotoxicity in A549 cancer cells after plasma treatment.H_(2)O_(2) and NO_(2) are regarded as key factors in promoting cell inactivation.The present study demonstrates the potential use of tumour cell therapy by atmospheric air PAM,which aids a better understanding of plasma liquid chemistry.展开更多
Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode tem...Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency.展开更多
To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examine...To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examined by simulation of a two-dimensional particle-in-cell/Monte Carlo collision, with two kinds of rib structure: the stripe rib structure and the Waffle rib structure. The results showed that the distribution of electric potential at the corner of the discharge cell was almost the same for these two rib structures while in the centre there was a difference between these two rib structures. The striation phenomenon could be observed in both cases. The distribution of density also indicated that the striation phenomenon was accompanied by the firing of discharge, and the Waffle rib structure might reduce the density humps. In the cell with a stripe rib structure, the profiles of the surface charge density along the sustained dielectric layer presented a better fluctuating distribution than that in the cell with a Waffle rib structure. The spatial potential and particle density in the discharge bulk showed that the Waffle ribs could weaken the striation phenomenon, which could be explained by the decrease in the particle numbers in the discharge cell. The simulation results of the ion incident angle showed that most ions impacted the sustained dielectric layer in the normal stripe rib cell with an incident angle in the range of 6° to 19° while with the Waffle rib structure the incident angle of most ions was in the range of 4° to 19°. The Waffle rib structure did not affect the angle distribution of incident ions significantly.展开更多
Gasification of extraction residue(ER) from direct coal liquefaction with pulverized coal is an efficient way for the utilization of carbonaceous wastes, which improve the overall efficiency of direct coal liquefactio...Gasification of extraction residue(ER) from direct coal liquefaction with pulverized coal is an efficient way for the utilization of carbonaceous wastes, which improve the overall efficiency of direct coal liquefaction technology. The discharge characteristics of ER mixing with pulverized coal is important paraments for its gasification process, which is seldom studied in the literature. In this study, the discharge characteristics of the pulverized coal(M1) as well as its mixture with ER(M2) were systematically investigated in an atmospheric pressure partial fluidization silo with different fluidization apparent velocity. It was observed that although M2 is a viscous powder with lower flowability than M1, the mass flow rate of M2 is 65% higher than M1 at the 3.7 mm·s-1apparent gas velocity. M2 exhibits the properties of Geldart A type powder, which improves the mass flow rate and stability of the discharged material. The mass flow rate of both M1 and M2 first increases and then slowly decreases with the increase of apparent gas velocity of the fluidizing air, which means the discharge process of M1 and M2 can be optimized by the apparent gas velocity.展开更多
Dielectric barrier discharge (DBD) has been widely employed in ozone generation.However,the technology still exhibits relatively low energy yield (E_(Y)) referring to its theoretical value.In this work,E_(Y)of ozone g...Dielectric barrier discharge (DBD) has been widely employed in ozone generation.However,the technology still exhibits relatively low energy yield (E_(Y)) referring to its theoretical value.In this work,E_(Y)of ozone generation was improved by optimizing the mesh number,electrode length,and dielectric material in a coaxial DBD reactor with two wire mesh electrodes.Meanwhile,the discharge characteristics were investigated to elucidate the effect of reactor configuration on E_(Y).Results showed that the discharge characteristics were improved by increasing the mesh number,electrode length,and relative permittivity.When the mesh number was increased from 40 to 100,an improvement of approximately 48%in E_(Y) was obtained.Additionally,higher E_(Y) values were obtained using corundum as the dielectric material relative to polytetrafluoroethylene and quartz.Ultimately,E_(Y) in the optimal DBD reactor could reach 326.77 g·(k W·h)^(-1).Compared with the reported DBD reactor,the coaxial DBD reactor with the mesh electrode and the dielectric material of corundum could effectively improve E_(Y),which lays a foundation for the design of high-efficiency coaxial DBD reactor.展开更多
A floating conductor exhibits a bipolar corona phenomenon with microscopic discharge characteristics that are still unclear.In this study,a plasma simulation model of the bipolar corona with 108 chemical reaction equa...A floating conductor exhibits a bipolar corona phenomenon with microscopic discharge characteristics that are still unclear.In this study,a plasma simulation model of the bipolar corona with 108 chemical reaction equations is established by combining hydrodynamics and plasma chemical reactions.The evolution characteristics of electrons,positive ions,negative ions and neutral particles,as well as the distribution characteristics of space charges are analyzed,and the evolutionary flow of microscopic particles is summarized.The results indicate that the positive end of the bipolar corona initiates discharge before the negative end,but the plasma chemistry at the negative end is more vigorous.The electron generation rate can reach 1240 mol(m^(3) s)^(-1),and the dissipation rate can reach 34 mol(m^(3) s)^(-1).The positive ion swarm is dominated by O_(4)^(+),and the maximum generation rate can reach 440 mol((m^(3) s)^(-1).The negative ion swarm is mainly O_(2) and O_(4).The O_(2) content is approximately 1.5-3 times that of O_(4),and the maximum reaction rate can reach 51 mol(m^(3) s)^(-1).The final destination of neutral particles is an accumulation in the form of O_(3) and NO,and the amount of O3 produced is approximately 4-6 times that of NO.The positive end of the bipolar corona is dominated by positive space charges,which continue to develop and spread outwards in the form of a pulse wave.The negative end exhibits a space charge distribution structure of concentrated positive charges and diffused negative charges.The validity of the microscopic simulation analysis is verified by the macroscopic discharge phenomenon.展开更多
The physical process of a single-stage planar-pulsed-inductive accelerator is investigated.Measurements include the waveforms of circuit current,capacitor voltage,plasma radiation intensity,and temporal plasma structu...The physical process of a single-stage planar-pulsed-inductive accelerator is investigated.Measurements include the waveforms of circuit current,capacitor voltage,plasma radiation intensity,and temporal plasma structure photos captured by a high-speed camera.Experiments are conducted under static ambient fill condition using argon as propellant.Varied values of capacitor voltage and gas pressure are compared.Further discussions quantify the EM interaction between circuit and plasma,as well as their energy deposition and current sheet acceleration.Based on the results of experiments,physical mechanisms of the initial ionization phase and the following acceleration phase are analyzed theoretically.展开更多
Low-power Hall thruster(LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio.Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust ...Low-power Hall thruster(LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio.Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust and efficiency,and to obtain the most optimal operating point,the experimental study of the discharge characteristics for three different anode positions was conducted under the operation of various discharge voltages(100-400 V) and anode mass flow rates(0.65 mg·s-1and 0.95 mg·s-1).The experimental results indicated that the thruster has the most excellent performance in terms of thrust and efficiency etc at a channel length of 27 mm for identical operating conditions.In addition,particle in cell simulations,employed to reveal the underlying physical mechanisms,show that the ionization and acceleration zone is pushed downwards towards the channel exit as the anode moves towards the exit.At the identical operating point,when the channel length is reduced from 32 to 27 mm,the ionization and acceleration zone moves towards the exit,and the parameters such as thrust and efficiency increase due to the high ionization rate,ion number density,and axial electric field.When the channel length is further moved to 24 mm,the parameters in terms of thrust(F) and efficiency(ηa) are reduced as a result of the decreasing ionization efficiency(ηm) and the larger plume divergence angle(α).In this paper,the results indicated that an optimum anode position(ΔL=27 mm) exists for the optimum performance.展开更多
The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge...The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), ...The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), discharge current peak, and full-width-at-half-maximum (FWHM) of the discharge current pulse, are experimentally studied. The results indicate that as the Xe gas content in the He-Ne-Xe gas mixture or total pressure increases, the sustaining voltage margin increases, the white-field chromaticity improves, and the discharge current peak has a maximum value, while DTL and FWHM have a minimum value. The mean electron energy in the gas mixture discharge is also calculated through a numerical solution of Boltzmann equation. The experimental results are explained from a view of the mean electron energy variations with the Xe gas content and total gas pressure.展开更多
Hollow cathode,with the highest plasma density,current density,and temperature,becomes one of the most important components in the electro-thruster system.As the electric-propulsion thruster performance is directly re...Hollow cathode,with the highest plasma density,current density,and temperature,becomes one of the most important components in the electro-thruster system.As the electric-propulsion thruster performance is directly related to the ionization rate,reliability,and lifetime of the hollow cathode,this paper develops a global model to study the effects of discharge current,gas flow rate,and gas species on the discharge characteristics in the insert and orifice regions of the hollow cathode.The emitter wall temperatures of hollow cathodes predicted by the global model are compared with experimental results from NSTAR thruster neutralization cathodes,confirming the model's validity.The influence of hollow cathode emitter material and structure sizes on the plasma parameters in the internal regions was also evaluated.The simulation results show that there is an optimal matching relationship between the discharge current and gas flow rate to guarantee the maximum ionization rate.The optimal working region for the hollow cathode has been deter-mined under different energetic,regime and structural parameters.The global model established in this paper can quickly determine the key structure and operating parameters of hollow cathode at the design stage,and provide the theoretical basis for hollow cathode design and development.展开更多
Accelerated insulation aging problems under high frequency repetitive impulses in power electronic transformers are drawing more and more attention in modern power systems. Partial discharge (PD) characteristics inclu...Accelerated insulation aging problems under high frequency repetitive impulses in power electronic transformers are drawing more and more attention in modern power systems. Partial discharge (PD) characteristics including discharge inception voltage, phase distribution and statistical characteristics on polyimide (PI) surface under different impulse waveforms and the insulation life of PI films are studied in this paper. We carry out experiments based on PD and insulation lifetime test systems, using five different types of repetitive impulses, including three bipolar waves and two unipolar waves. The experimental results show that there is little variation in discharge inception voltage under different waveforms, but great variation in phase distribution and statistical characteristics of PD. In addition, insulation life is approximately the same under different waveforms with the same polarity, and the aging rate under bipolar waveforms is larger than that under unipolar waveforms. We explain the differences between the bipolar and unipolar waveforms on insulation life, which can be concluded that the surface charge under unipolar waveform accumulates more significnatly compared with bipolar waveform and decreases the electric filed strength in discharging the air gap and inhibits surface discharge from occurring.展开更多
The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis re...The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis results show that the discharge chamber with a convex grid has a larger’magnetic-field free area’than the others,and the parallelism of the magnetic-field isopotential lines and anode is generally the same in the three models.Plasma densities of the three structures at the grid outlet are in the range of 3.1×1016-6.9×1017m-3.Along the thruster axis direction,the electron temperature in the chamber with the convex and concave grids is in the range of 3.3-3.5 eV,while that with a flat grid is lower,in the range of 3.1-3.5 eV.In addition,the convex and the concave grids have better uniform distribution of electron temperature.Moreover,the collision frequency ratios show that the axial degree of ionization of the three models is the highest,and the flat grid has the highest discharge efficiency,followed by the convex grid and the concave grid is the least efficient.The test and simulation results of the 30 cm diameter ion thruster with the convex grid show that the measurement and calculation results are 3.67 A and 3.44 A,respectively,and the error above mainly comes from the ignorance of the doubly charged ions and parameter settings in the model.The comparison error between the simulation and measurement of beam current density is mainly caused by the actual thermal deformation of the grids during the discharge process,which leads to the change in electric potential distribution and variation of the focusing characteristics of the grids.Upon consideration of discharge performance and the thermal grid gap variation,it can be concluded that the flat and concave grids are more suitable for small-diameter ion thrusters,while the convex grid is a more reasonable choice for the higher-power and larger-diameter thrusters.展开更多
Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of...Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.展开更多
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB...Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.展开更多
Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient over...Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient overvoltage(VFTO)increases caused by a rise in voltage levels can lead to GIS insulation failures.In this paper,a generating system of VFTO and standard lightning impulse(LI)is established.The insulation characteristics of SF6 gas with and without insulators under VFTO and standard LI are investigated.Experimental results show that the 50%breakdown voltages of the inhomogeneous electric field rod-plane gap under positive VFTO and standard LI are higher than that under negative VFTO and standard LI.The research shows that the 50%breakdown voltage under VFTO could be lower than that under standard LI at 0.5 MPa for the negative polarity.Moreover,the polarity effect of the insulator without defect is different from that with defect.Similarly,the breakdown voltage of the defective insulator under VFTO could be lower than that under standard LI by 8%.The flashover channel under VFTO is seen as more than that under standard LI.Based on the analysis of discharge images and experimental results,it is concluded that the polarity effect is related to the distortion effect of ion clusters formed by SF6 on the electric field.Additionally,the steepness and front time of impulse plays an important role in the initiation and further development of discharge on insulator surface.Finally,the research shows that different discharge characteristics between VFTO and standard LI may be caused by different wave fronts and oscillation on the tails of the impulses.展开更多
基金supported by National Natural Science Foundation of China(Nos.51777091 and 51677083)
文摘A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.
基金State Ministry of Education Under contract No. 96053311.
文摘A Li-B alloy has been prepared using a pretreated amorphous B powder and pure Li ingot as starting materials by continually slow addition of B powder and intensified stirring in the process of melting. The microstructure and the discharge characteristic of the materials have been investigated- Results show that the problem of temperature control in synthesis would be modified by means of continual addition of B powder, the Li7B6 would be more finely distributed in the metal Li by means of intensified stirring. The discharge characteristic of the Li-B alloy using amorphous B as starting materials is almost the same with that of using crystalline B.
基金partly supported by National Natural Science Foundation of China(No.51577098)the State Grid Corporation of China,and China Southern Power Grid
文摘Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This paper describes the discharge characteristics of different types of air terminals,two of which are quite similar to the ESE-type dynasphere,and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.
基金supported by National Natural Science Foundation of China(Nos.12075188,52077166 and 51837008)State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE20302).
文摘In this study,we investigated the effects of the quartz tube diameter,air flow rate,and applied voltage on the characteristics of an air plasma jet to obtain the optimized discharge characteristics.The physicochemical properties and concentration of reactive oxygen and nitrogen species(RONS)in plasma-activated medium(PAM)were characterized to explore their chemical activity.Furthermore,we investigated the inactivation effect of air plasma jet on tumour cells and their corresponding inactivation mechanism.The results show that the tube diameter plays an important role in sustaining the voltage of the air plasma jet,and the gas flow rate affects the jet length and discharge intensity.Additionally,the air plasma jet discharge displays two modes,namely,ozone and nitrogen oxide modes at high and low gas flow rates,respectively.Increasing the voltage increases the concentration of reactive species and the length of discharge.By evaluating the viability of A549 cells under different parameters,the optimal treatment conditions were determined to be a quartz tube diameter of 4 mm,gas flow rate of 0.5 SLM,and voltage of 18 k V.Furthermore,an air plasma jet under the optimized conditions effectively enhanced the chemical activity in PAM and produced more aqueous RONS.The air plasma jet induced significant cytotoxicity in A549 cancer cells after plasma treatment.H_(2)O_(2) and NO_(2) are regarded as key factors in promoting cell inactivation.The present study demonstrates the potential use of tumour cell therapy by atmospheric air PAM,which aids a better understanding of plasma liquid chemistry.
基金funded by National Natural Science Foundation of China(Nos.51507040,51736003 and 51777045)the Research Program(No.JSZL2016203C006)the Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.2015079)
文摘Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency.
文摘To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examined by simulation of a two-dimensional particle-in-cell/Monte Carlo collision, with two kinds of rib structure: the stripe rib structure and the Waffle rib structure. The results showed that the distribution of electric potential at the corner of the discharge cell was almost the same for these two rib structures while in the centre there was a difference between these two rib structures. The striation phenomenon could be observed in both cases. The distribution of density also indicated that the striation phenomenon was accompanied by the firing of discharge, and the Waffle rib structure might reduce the density humps. In the cell with a stripe rib structure, the profiles of the surface charge density along the sustained dielectric layer presented a better fluctuating distribution than that in the cell with a Waffle rib structure. The spatial potential and particle density in the discharge bulk showed that the Waffle ribs could weaken the striation phenomenon, which could be explained by the decrease in the particle numbers in the discharge cell. The simulation results of the ion incident angle showed that most ions impacted the sustained dielectric layer in the normal stripe rib cell with an incident angle in the range of 6° to 19° while with the Waffle rib structure the incident angle of most ions was in the range of 4° to 19°. The Waffle rib structure did not affect the angle distribution of incident ions significantly.
文摘Gasification of extraction residue(ER) from direct coal liquefaction with pulverized coal is an efficient way for the utilization of carbonaceous wastes, which improve the overall efficiency of direct coal liquefaction technology. The discharge characteristics of ER mixing with pulverized coal is important paraments for its gasification process, which is seldom studied in the literature. In this study, the discharge characteristics of the pulverized coal(M1) as well as its mixture with ER(M2) were systematically investigated in an atmospheric pressure partial fluidization silo with different fluidization apparent velocity. It was observed that although M2 is a viscous powder with lower flowability than M1, the mass flow rate of M2 is 65% higher than M1 at the 3.7 mm·s-1apparent gas velocity. M2 exhibits the properties of Geldart A type powder, which improves the mass flow rate and stability of the discharged material. The mass flow rate of both M1 and M2 first increases and then slowly decreases with the increase of apparent gas velocity of the fluidizing air, which means the discharge process of M1 and M2 can be optimized by the apparent gas velocity.
基金supported by the National Natural Science Foundation of China (21725601 and 2187081058)。
文摘Dielectric barrier discharge (DBD) has been widely employed in ozone generation.However,the technology still exhibits relatively low energy yield (E_(Y)) referring to its theoretical value.In this work,E_(Y)of ozone generation was improved by optimizing the mesh number,electrode length,and dielectric material in a coaxial DBD reactor with two wire mesh electrodes.Meanwhile,the discharge characteristics were investigated to elucidate the effect of reactor configuration on E_(Y).Results showed that the discharge characteristics were improved by increasing the mesh number,electrode length,and relative permittivity.When the mesh number was increased from 40 to 100,an improvement of approximately 48%in E_(Y) was obtained.Additionally,higher E_(Y) values were obtained using corundum as the dielectric material relative to polytetrafluoroethylene and quartz.Ultimately,E_(Y) in the optimal DBD reactor could reach 326.77 g·(k W·h)^(-1).Compared with the reported DBD reactor,the coaxial DBD reactor with the mesh electrode and the dielectric material of corundum could effectively improve E_(Y),which lays a foundation for the design of high-efficiency coaxial DBD reactor.
基金supported by the Aeronautical Science Foundation of China(No.201944057001)the National Key Research and Development Program of China(No.2017YFC1501506).
文摘A floating conductor exhibits a bipolar corona phenomenon with microscopic discharge characteristics that are still unclear.In this study,a plasma simulation model of the bipolar corona with 108 chemical reaction equations is established by combining hydrodynamics and plasma chemical reactions.The evolution characteristics of electrons,positive ions,negative ions and neutral particles,as well as the distribution characteristics of space charges are analyzed,and the evolutionary flow of microscopic particles is summarized.The results indicate that the positive end of the bipolar corona initiates discharge before the negative end,but the plasma chemistry at the negative end is more vigorous.The electron generation rate can reach 1240 mol(m^(3) s)^(-1),and the dissipation rate can reach 34 mol(m^(3) s)^(-1).The positive ion swarm is dominated by O_(4)^(+),and the maximum generation rate can reach 440 mol((m^(3) s)^(-1).The negative ion swarm is mainly O_(2) and O_(4).The O_(2) content is approximately 1.5-3 times that of O_(4),and the maximum reaction rate can reach 51 mol(m^(3) s)^(-1).The final destination of neutral particles is an accumulation in the form of O_(3) and NO,and the amount of O3 produced is approximately 4-6 times that of NO.The positive end of the bipolar corona is dominated by positive space charges,which continue to develop and spread outwards in the form of a pulse wave.The negative end exhibits a space charge distribution structure of concentrated positive charges and diffused negative charges.The validity of the microscopic simulation analysis is verified by the macroscopic discharge phenomenon.
基金Project supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ3592).
文摘The physical process of a single-stage planar-pulsed-inductive accelerator is investigated.Measurements include the waveforms of circuit current,capacitor voltage,plasma radiation intensity,and temporal plasma structure photos captured by a high-speed camera.Experiments are conducted under static ambient fill condition using argon as propellant.Varied values of capacitor voltage and gas pressure are compared.Further discussions quantify the EM interaction between circuit and plasma,as well as their energy deposition and current sheet acceleration.Based on the results of experiments,physical mechanisms of the initial ionization phase and the following acceleration phase are analyzed theoretically.
基金National Natural Science Foundation of China (No.12005087)Science and Technology Program of Gansu Province (Nos.2006ZCTF0054, HTKJ2019KL510003,and 20JR10RA478)。
文摘Low-power Hall thruster(LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio.Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust and efficiency,and to obtain the most optimal operating point,the experimental study of the discharge characteristics for three different anode positions was conducted under the operation of various discharge voltages(100-400 V) and anode mass flow rates(0.65 mg·s-1and 0.95 mg·s-1).The experimental results indicated that the thruster has the most excellent performance in terms of thrust and efficiency etc at a channel length of 27 mm for identical operating conditions.In addition,particle in cell simulations,employed to reveal the underlying physical mechanisms,show that the ionization and acceleration zone is pushed downwards towards the channel exit as the anode moves towards the exit.At the identical operating point,when the channel length is reduced from 32 to 27 mm,the ionization and acceleration zone moves towards the exit,and the parameters such as thrust and efficiency increase due to the high ionization rate,ion number density,and axial electric field.When the channel length is further moved to 24 mm,the parameters in terms of thrust(F) and efficiency(ηa) are reduced as a result of the decreasing ionization efficiency(ηm) and the larger plume divergence angle(α).In this paper,the results indicated that an optimum anode position(ΔL=27 mm) exists for the optimum performance.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB209405)National Natural Science Foundation of China(No.51207154)the Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University of China(No.EIPE12204)
文摘The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金supported by Natural Science Foundation of Shannxi Province (No.2004F16)the On-the-job Doctoral Foundation of Xi'an Jiaotong University (for the year 2004)
文摘The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), discharge current peak, and full-width-at-half-maximum (FWHM) of the discharge current pulse, are experimentally studied. The results indicate that as the Xe gas content in the He-Ne-Xe gas mixture or total pressure increases, the sustaining voltage margin increases, the white-field chromaticity improves, and the discharge current peak has a maximum value, while DTL and FWHM have a minimum value. The mean electron energy in the gas mixture discharge is also calculated through a numerical solution of Boltzmann equation. The experimental results are explained from a view of the mean electron energy variations with the Xe gas content and total gas pressure.
基金supported by the National Natural Science Foundation of China (Nos.U22B20120,NSFC52202460 and NSFC52177128)the National Key R&D Program of China (Nos.2020YFC2201100 and 2021YFC2202804,2022YFB3403504)+1 种基金the China Postdoctoral Science Foundation (Nos.2021M690392 and 2021TQ0036)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology,China (No.LabASP-2021-04).
文摘Hollow cathode,with the highest plasma density,current density,and temperature,becomes one of the most important components in the electro-thruster system.As the electric-propulsion thruster performance is directly related to the ionization rate,reliability,and lifetime of the hollow cathode,this paper develops a global model to study the effects of discharge current,gas flow rate,and gas species on the discharge characteristics in the insert and orifice regions of the hollow cathode.The emitter wall temperatures of hollow cathodes predicted by the global model are compared with experimental results from NSTAR thruster neutralization cathodes,confirming the model's validity.The influence of hollow cathode emitter material and structure sizes on the plasma parameters in the internal regions was also evaluated.The simulation results show that there is an optimal matching relationship between the discharge current and gas flow rate to guarantee the maximum ionization rate.The optimal working region for the hollow cathode has been deter-mined under different energetic,regime and structural parameters.The global model established in this paper can quickly determine the key structure and operating parameters of hollow cathode at the design stage,and provide the theoretical basis for hollow cathode design and development.
基金supported by the National Natural Science Foundation of China(51929701,52207153)Fundamental Research Funds for the Central Universities(2023JC005).
文摘Accelerated insulation aging problems under high frequency repetitive impulses in power electronic transformers are drawing more and more attention in modern power systems. Partial discharge (PD) characteristics including discharge inception voltage, phase distribution and statistical characteristics on polyimide (PI) surface under different impulse waveforms and the insulation life of PI films are studied in this paper. We carry out experiments based on PD and insulation lifetime test systems, using five different types of repetitive impulses, including three bipolar waves and two unipolar waves. The experimental results show that there is little variation in discharge inception voltage under different waveforms, but great variation in phase distribution and statistical characteristics of PD. In addition, insulation life is approximately the same under different waveforms with the same polarity, and the aging rate under bipolar waveforms is larger than that under unipolar waveforms. We explain the differences between the bipolar and unipolar waveforms on insulation life, which can be concluded that the surface charge under unipolar waveform accumulates more significnatly compared with bipolar waveform and decreases the electric filed strength in discharging the air gap and inhibits surface discharge from occurring.
基金National Natural Science Foundation of China(No.61901202)Key Laboratory Funds for the Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Physics(No.HTKJ2019KL510003)。
文摘The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis results show that the discharge chamber with a convex grid has a larger’magnetic-field free area’than the others,and the parallelism of the magnetic-field isopotential lines and anode is generally the same in the three models.Plasma densities of the three structures at the grid outlet are in the range of 3.1×1016-6.9×1017m-3.Along the thruster axis direction,the electron temperature in the chamber with the convex and concave grids is in the range of 3.3-3.5 eV,while that with a flat grid is lower,in the range of 3.1-3.5 eV.In addition,the convex and the concave grids have better uniform distribution of electron temperature.Moreover,the collision frequency ratios show that the axial degree of ionization of the three models is the highest,and the flat grid has the highest discharge efficiency,followed by the convex grid and the concave grid is the least efficient.The test and simulation results of the 30 cm diameter ion thruster with the convex grid show that the measurement and calculation results are 3.67 A and 3.44 A,respectively,and the error above mainly comes from the ignorance of the doubly charged ions and parameter settings in the model.The comparison error between the simulation and measurement of beam current density is mainly caused by the actual thermal deformation of the grids during the discharge process,which leads to the change in electric potential distribution and variation of the focusing characteristics of the grids.Upon consideration of discharge performance and the thermal grid gap variation,it can be concluded that the flat and concave grids are more suitable for small-diameter ion thrusters,while the convex grid is a more reasonable choice for the higher-power and larger-diameter thrusters.
基金financially supported by National Natural Science Foundation of China(Nos.12172379,12322211,and 11925207)。
文摘Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.
基金supported by National Natural Science Foundation of China(Nos.52037004 and 52177148)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_1449).
文摘Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.
基金supported by National Basic Research Program of China(973 Program)and Science and Technology Project of SGCC“Research on the Application of VFTO Key Techniques in Ultra High GIS Substation”(GYB17201400111).
文摘Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient overvoltage(VFTO)increases caused by a rise in voltage levels can lead to GIS insulation failures.In this paper,a generating system of VFTO and standard lightning impulse(LI)is established.The insulation characteristics of SF6 gas with and without insulators under VFTO and standard LI are investigated.Experimental results show that the 50%breakdown voltages of the inhomogeneous electric field rod-plane gap under positive VFTO and standard LI are higher than that under negative VFTO and standard LI.The research shows that the 50%breakdown voltage under VFTO could be lower than that under standard LI at 0.5 MPa for the negative polarity.Moreover,the polarity effect of the insulator without defect is different from that with defect.Similarly,the breakdown voltage of the defective insulator under VFTO could be lower than that under standard LI by 8%.The flashover channel under VFTO is seen as more than that under standard LI.Based on the analysis of discharge images and experimental results,it is concluded that the polarity effect is related to the distortion effect of ion clusters formed by SF6 on the electric field.Additionally,the steepness and front time of impulse plays an important role in the initiation and further development of discharge on insulator surface.Finally,the research shows that different discharge characteristics between VFTO and standard LI may be caused by different wave fronts and oscillation on the tails of the impulses.