Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,an...Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance.展开更多
Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review...Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.展开更多
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in...A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.展开更多
α-Synuclein and tau are abundant multifunctional brain proteins that are mainly expressed in the presynaptic and axonal compartments of neurons,respectively.Previous works have revealed that intracellular deposition...α-Synuclein and tau are abundant multifunctional brain proteins that are mainly expressed in the presynaptic and axonal compartments of neurons,respectively.Previous works have revealed that intracellular deposition ofα-synuclein and/or tau causes many neurodegenerative disorders,including Alzheimer’s disease and Parkinson’s disease.Despite intense investigation,the normal physiological functions and roles ofα-synuclein and tau are still unclear,owing to the fact that mice with knockout of either of these proteins do not present apparent phenotypes.Interestingly,the co-occurrence ofα-synuclein and tau aggregates was found in post-mortem brains with synucleinopathies and tauopathies,some of which share similarities in clinical manifestations.Furthermore,the direct interaction ofα-synuclein with tau is considered to promote the fibrillization of each of the proteins in vitro and in vivo.On the other hand,our recent findings have revealed thatα-synuclein and tau are cooperatively involved in brain development in a stage-dependent manner.These findings indicate strong cross-talk between the two proteins in physiology and pathology.In this review,we provide a summary of the recent findings on the functional roles ofα-synuclein and tau in the physiological conditions and pathogenesis of neurodegenerative diseases.A deep understanding of the interplay betweenα-synuclein and tau in physiological and pathological conditions might provide novel targets for clinical diagnosis and therapeutic strategies to treat neurodegenerative diseases.展开更多
Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neur...Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.展开更多
Neurodegenerative disorders affect millions of people worldwide,and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years.While thera...Neurodegenerative disorders affect millions of people worldwide,and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years.While therapies exist to aid in symptomatic relief,effective treatments that can stop or reve rse the progress of each neurodegenerative disease are lacking.Recently,research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied.Exosomes,30-150 nm in diameter,are one type of extracellular vesicles facilitating cell-to-cell communication.Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases,such as Alzheimer's disease,Parkinson s disease,and amyotrophic lateral sclerosis.Accordingly,the exosomes derived from the patients are an invaluable source of disease biomarkers.On the other hand,exosomes,especially those derived from stem cells,could serve as a therapeutic for these disorders,as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases.This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders.We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy.Finally,this review concludes with outstanding questions that remain to be addressed in exosomal research.展开更多
The perianal disease affects up to one-third of individuals with Crohn's disease(CD),causing disabling symptoms and significant impairment in quality of life,particularly for those with perianal fistulising CD(PFC...The perianal disease affects up to one-third of individuals with Crohn's disease(CD),causing disabling symptoms and significant impairment in quality of life,particularly for those with perianal fistulising CD(PFCD).The collaborative effort between gastroenterologists and surgeons is essential for addressing PFCD to achieve fistula closure and promote luminal healing.Limited fistula healing rates with conventional therapies have prompted the emergence of new biological agents,endoscopic procedures and surgical techniques that show promising results.Among these,mesenchymal stem cells injection is a particularly hopeful therapy.In addition to the burden of fistulas,individuals with perianal CD may face an increased risk of developing anal cancer.This underscores the importance of surveillance programmes and timely interventions to prevent late diagnoses and poor outcomes.Currently,there is no established formal anal screening programme.In this review,we provide an overview of the current state of the art in managing PFCD,including novel medical,endoscopic and surgical approaches.The discussion also focuses on the relevance of establishing an anal cancer screening programme in CD,intending to propose a risk-based surveillance algorithm.The validation of this surveillance programme would be a significant step forward in improving patient care and outcomes.展开更多
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso...Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.展开更多
Achalasia cardia,the most prevalent primary esophageal motility disorder,is predominantly characterized by symptoms of dysphagia and regurgitation.The principal therapeutic approaches for achalasia encompass pneumatic...Achalasia cardia,the most prevalent primary esophageal motility disorder,is predominantly characterized by symptoms of dysphagia and regurgitation.The principal therapeutic approaches for achalasia encompass pneumatic dilatation(PD),Heller's myotomy,and the more recent per-oral endoscopic myotomy(POEM).POEM has been substantiated as a safe and efficacious modality for the management of achalasia.Although POEM demonstrates superior efficacy compared to PD and an efficacy parallel to Heller's myotomy,the incidence of gastroesophageal reflux disease(GERD)following POEM is notably higher than with the aforementioned techniques.While symptomatic reflux post-POEM is relatively infrequent,the significant occurrence of erosive esophagitis and heightened esophageal acid exposure necessitates vigilant monitoring to preclude long-term GERD-related complications.Contemporary advancements in the field have enhanced our comprehension of the risk factors,diagnostic methodologies,preventative strategies,and therapeutic management of GERD subsequent to POEM.This review focuses on the limitations inherent in the 24-h pH study for evaluating post-POEM reflux,potential modifications in the POEM technique to mitigate GERD risk,and the strategies for managing reflux following POEM.展开更多
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases(Alzheimer’s disease,multiple sclerosis,Parkinson’s disease,Huntington’s disease),cerebr...Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases(Alzheimer’s disease,multiple sclerosis,Parkinson’s disease,Huntington’s disease),cerebrovascular conditions(stroke),and neurodevelopmental disorders(autism spectrum disorder).Although they affect millions of individuals around the world,only a limited number of effective treatment options are available today.Since most neurological disorders express mitochondria-related metabolic perturbations,metformin,a biguanide type II antidiabetic drug,has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism.However,controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders.Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging,lifestyle,genetics,and environment,it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders.These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment,ultimately developing targeted therapy.In this review,we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa...Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.展开更多
Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.T...Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs.Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitte rs.Among these candidate neurotransmitters,lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years.Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses;animal experiments have also shown that the supply of exogenous la ctate exerts an antidepressant effect.In this review,we have described how medications targeting newer neurotransmitte rs offer promise in psychiatric diseases;we have also summarized the advances in the use of lactate(and its corresponding signaling pathways)as a signaling molecule.In addition,we have described the alterations in brain lactate levels in depression,anxiety,bipolar disorder,and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology.展开更多
BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ...BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.展开更多
Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular home...Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis,while providing nutrients and support for cell survival.Chaperone-mediated autophagy activity can be detected in almost all cells,including neurons.Owing to the extreme sensitivity of neurons to their environmental changes,maintaining neuronal homeostasis is critical for neuronal growth and survival.Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases.It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction.Under certain conditions,regulation of chaperone-mediated autophagy activity attenuates neurotoxicity.In this paper,we review the changes in chaperone-mediated autophagy in neurodegenerative diseases,brain injury,glioma,and autoimmune diseases.We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.展开更多
Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial q...Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis.Mature neurons are postmitotic and consume substantial energy,thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria.Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases.However,more work is needed to study mitophagy pathway components as potential therapeutic targets.In this review,we briefly discuss the characteristics of nonselective autophagy and selective autophagy,including ERphagy,aggrephagy,and mitophagy.We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions.Next,we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy.Importantly,we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.Last,we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases.Together,our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.展开更多
This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivot...This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.展开更多
Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s dis...Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.展开更多
BACKGROUND Early diagnosis is key to prevent bowel damage in inflammatory bowel disease(IBD).Risk factor analyses linked with delayed diagnosis in European IBD patients are scarce and no data in German IBD patients ex...BACKGROUND Early diagnosis is key to prevent bowel damage in inflammatory bowel disease(IBD).Risk factor analyses linked with delayed diagnosis in European IBD patients are scarce and no data in German IBD patients exists.AIM To identify risk factors leading to prolonged diagnostic time in a German IBD cohort.METHODS Between 2012 and 2022,430 IBD patients from four Berlin hospitals were enrolled in a prospective study and asked to complete a 16-item questionnaire to determine features of the path leading to IBD diagnosis.Total diagnostic time was defined as the time from symptom onset to consulting a physician(patient waiting time)and from first consultation to IBD diagnosis(physician diagnostic time).Univariate and multivariate analyses were performed to identify risk factors for each time period.RESULTS The total diagnostic time was significantly longer in Crohn’s disease(CD)compared to ulcerative colitis(UC)patients(12.0 vs 4.0 mo;P<0.001),mainly due to increased physician diagnostic time(5.5 vs 1.0 mo;P<0.001).In a multivariate analysis,the predominant symptoms diarrhea(P=0.012)and skin lesions(P=0.028)as well as performed gastroscopy(P=0.042)were associated with longer physician diagnostic time in CD patients.In UC,fever was correlated(P=0.020)with shorter physician diagnostic time,while fatigue(P=0.011)and positive family history(P=0.046)were correlated with longer physician diagnostic time.CONCLUSION We demonstrated that CD patients compared to UC are at risk of long diagnostic delay.Future efforts should focus on shortening the diagnostic delay for a better outcome in these patients.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
文摘Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance.
基金supported partly by the National Natural Science Foundation of China,Nos.32161143021 and 81271410the Natural Science Foundation of Henan Province of China,No.182300410313(all to JW)。
文摘Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
基金financially supported by the National Natural Science Foundation of China,No.32002235(to MT)the Science and Technology Foundation of Taian of Shandong Province,No.2020NS216(to XL)。
文摘A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
基金supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region,Nos.2022GXNSFAA035622(to MJ),2020GXNSFAA297048(to ZZ)the National Natural Science Foundation of China,No.82060268(to ZZ)。
文摘α-Synuclein and tau are abundant multifunctional brain proteins that are mainly expressed in the presynaptic and axonal compartments of neurons,respectively.Previous works have revealed that intracellular deposition ofα-synuclein and/or tau causes many neurodegenerative disorders,including Alzheimer’s disease and Parkinson’s disease.Despite intense investigation,the normal physiological functions and roles ofα-synuclein and tau are still unclear,owing to the fact that mice with knockout of either of these proteins do not present apparent phenotypes.Interestingly,the co-occurrence ofα-synuclein and tau aggregates was found in post-mortem brains with synucleinopathies and tauopathies,some of which share similarities in clinical manifestations.Furthermore,the direct interaction ofα-synuclein with tau is considered to promote the fibrillization of each of the proteins in vitro and in vivo.On the other hand,our recent findings have revealed thatα-synuclein and tau are cooperatively involved in brain development in a stage-dependent manner.These findings indicate strong cross-talk between the two proteins in physiology and pathology.In this review,we provide a summary of the recent findings on the functional roles ofα-synuclein and tau in the physiological conditions and pathogenesis of neurodegenerative diseases.A deep understanding of the interplay betweenα-synuclein and tau in physiological and pathological conditions might provide novel targets for clinical diagnosis and therapeutic strategies to treat neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,No.82101493(to JY)。
文摘Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.
基金supported by the National Institute on Aging of NIH(No.RF1AG072510 to HW)the National Institute of General Medical Sciences(NINGM)of NIH(No.P20GM103443 to HW via Dr.Victor Huber)+1 种基金the National Science Foundation(NSF)(No.DGE-1633213 to CCH via Dr.Brian Burrell)the NIH/NIGMS(No.T32GM-136503 to CCH via Dr.Brian Burrell)。
文摘Neurodegenerative disorders affect millions of people worldwide,and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years.While therapies exist to aid in symptomatic relief,effective treatments that can stop or reve rse the progress of each neurodegenerative disease are lacking.Recently,research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied.Exosomes,30-150 nm in diameter,are one type of extracellular vesicles facilitating cell-to-cell communication.Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases,such as Alzheimer's disease,Parkinson s disease,and amyotrophic lateral sclerosis.Accordingly,the exosomes derived from the patients are an invaluable source of disease biomarkers.On the other hand,exosomes,especially those derived from stem cells,could serve as a therapeutic for these disorders,as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases.This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders.We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy.Finally,this review concludes with outstanding questions that remain to be addressed in exosomal research.
文摘The perianal disease affects up to one-third of individuals with Crohn's disease(CD),causing disabling symptoms and significant impairment in quality of life,particularly for those with perianal fistulising CD(PFCD).The collaborative effort between gastroenterologists and surgeons is essential for addressing PFCD to achieve fistula closure and promote luminal healing.Limited fistula healing rates with conventional therapies have prompted the emergence of new biological agents,endoscopic procedures and surgical techniques that show promising results.Among these,mesenchymal stem cells injection is a particularly hopeful therapy.In addition to the burden of fistulas,individuals with perianal CD may face an increased risk of developing anal cancer.This underscores the importance of surveillance programmes and timely interventions to prevent late diagnoses and poor outcomes.Currently,there is no established formal anal screening programme.In this review,we provide an overview of the current state of the art in managing PFCD,including novel medical,endoscopic and surgical approaches.The discussion also focuses on the relevance of establishing an anal cancer screening programme in CD,intending to propose a risk-based surveillance algorithm.The validation of this surveillance programme would be a significant step forward in improving patient care and outcomes.
基金supported by grants from the Department of Science and Technology of Sichuan Province,Nos.2021ZYD0093(to LY),2022YFS0597(to LY),2021YJ0480(to YT),and 2022ZYD0076(to JY)。
文摘Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
文摘Achalasia cardia,the most prevalent primary esophageal motility disorder,is predominantly characterized by symptoms of dysphagia and regurgitation.The principal therapeutic approaches for achalasia encompass pneumatic dilatation(PD),Heller's myotomy,and the more recent per-oral endoscopic myotomy(POEM).POEM has been substantiated as a safe and efficacious modality for the management of achalasia.Although POEM demonstrates superior efficacy compared to PD and an efficacy parallel to Heller's myotomy,the incidence of gastroesophageal reflux disease(GERD)following POEM is notably higher than with the aforementioned techniques.While symptomatic reflux post-POEM is relatively infrequent,the significant occurrence of erosive esophagitis and heightened esophageal acid exposure necessitates vigilant monitoring to preclude long-term GERD-related complications.Contemporary advancements in the field have enhanced our comprehension of the risk factors,diagnostic methodologies,preventative strategies,and therapeutic management of GERD subsequent to POEM.This review focuses on the limitations inherent in the 24-h pH study for evaluating post-POEM reflux,potential modifications in the POEM technique to mitigate GERD risk,and the strategies for managing reflux following POEM.
文摘Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases(Alzheimer’s disease,multiple sclerosis,Parkinson’s disease,Huntington’s disease),cerebrovascular conditions(stroke),and neurodevelopmental disorders(autism spectrum disorder).Although they affect millions of individuals around the world,only a limited number of effective treatment options are available today.Since most neurological disorders express mitochondria-related metabolic perturbations,metformin,a biguanide type II antidiabetic drug,has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism.However,controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders.Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging,lifestyle,genetics,and environment,it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders.These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment,ultimately developing targeted therapy.In this review,we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
文摘Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.
基金financially supported by the National Nature Science Foundation of China,Nos.82271508(to YC)82001384(to YC)82271316(to HG)。
文摘Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs.Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitte rs.Among these candidate neurotransmitters,lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years.Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses;animal experiments have also shown that the supply of exogenous la ctate exerts an antidepressant effect.In this review,we have described how medications targeting newer neurotransmitte rs offer promise in psychiatric diseases;we have also summarized the advances in the use of lactate(and its corresponding signaling pathways)as a signaling molecule.In addition,we have described the alterations in brain lactate levels in depression,anxiety,bipolar disorder,and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology.
基金National Natural Science Foundation of China,No.72101236China Postdoctoral Science Foundation,No.2022M722900+1 种基金Collaborative Innovation Project of Zhengzhou City,No.XTCX2023006Nursing Team Project of the First Affiliated Hospital of Zhengzhou University,No.HLKY2023005.
文摘BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.
基金supported by the National Nature Science Foundation of China,Nos.81871603(to XZ)and 82171322(to ZF)Discipline Boost Program of the First Affiliated Hospital of Air Force Military Medical University,No.XJZT21J08(to XZ)the Natural Science Foundation of Shaanxi Province of China,No.2022KJXX-102(to ZF)。
文摘Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis,while providing nutrients and support for cell survival.Chaperone-mediated autophagy activity can be detected in almost all cells,including neurons.Owing to the extreme sensitivity of neurons to their environmental changes,maintaining neuronal homeostasis is critical for neuronal growth and survival.Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases.It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction.Under certain conditions,regulation of chaperone-mediated autophagy activity attenuates neurotoxicity.In this paper,we review the changes in chaperone-mediated autophagy in neurodegenerative diseases,brain injury,glioma,and autoimmune diseases.We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
基金supported by the National Natural Science Foundation of China,Nos.82001211(to KY),82101241(to SW),and 82125032(to FL).
文摘Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis.Mature neurons are postmitotic and consume substantial energy,thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria.Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases.However,more work is needed to study mitophagy pathway components as potential therapeutic targets.In this review,we briefly discuss the characteristics of nonselective autophagy and selective autophagy,including ERphagy,aggrephagy,and mitophagy.We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions.Next,we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy.Importantly,we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.Last,we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases.Together,our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
文摘This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
基金supported in parts by the National Natural Science Foundation of China,Nos.82101501(to QF),and 82201589(to XH)。
文摘Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.
文摘BACKGROUND Early diagnosis is key to prevent bowel damage in inflammatory bowel disease(IBD).Risk factor analyses linked with delayed diagnosis in European IBD patients are scarce and no data in German IBD patients exists.AIM To identify risk factors leading to prolonged diagnostic time in a German IBD cohort.METHODS Between 2012 and 2022,430 IBD patients from four Berlin hospitals were enrolled in a prospective study and asked to complete a 16-item questionnaire to determine features of the path leading to IBD diagnosis.Total diagnostic time was defined as the time from symptom onset to consulting a physician(patient waiting time)and from first consultation to IBD diagnosis(physician diagnostic time).Univariate and multivariate analyses were performed to identify risk factors for each time period.RESULTS The total diagnostic time was significantly longer in Crohn’s disease(CD)compared to ulcerative colitis(UC)patients(12.0 vs 4.0 mo;P<0.001),mainly due to increased physician diagnostic time(5.5 vs 1.0 mo;P<0.001).In a multivariate analysis,the predominant symptoms diarrhea(P=0.012)and skin lesions(P=0.028)as well as performed gastroscopy(P=0.042)were associated with longer physician diagnostic time in CD patients.In UC,fever was correlated(P=0.020)with shorter physician diagnostic time,while fatigue(P=0.011)and positive family history(P=0.046)were correlated with longer physician diagnostic time.CONCLUSION We demonstrated that CD patients compared to UC are at risk of long diagnostic delay.Future efforts should focus on shortening the diagnostic delay for a better outcome in these patients.