In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produce...In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.展开更多
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design metho...This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.展开更多
Cracks in rock or soil slopes influence the stability and durability of the slopes. Seismic forces can trigger slope disasters, particularly in the cracked slopes. Considering the nonlinear characteristics of material...Cracks in rock or soil slopes influence the stability and durability of the slopes. Seismic forces can trigger slope disasters, particularly in the cracked slopes. Considering the nonlinear characteristics of materials, the more generalized nonlinear failure criterion proposed by Baker is adopted. The influence of non-dimensional strength parameters on the stability of cracked slopes under earthquakes is performed using the upper bound limit analysis. The seismic displacement is calculated by adopting the logarithmic spiral failure surface according to the sliding rigid block model. Based on the existing studies, two methods for the stability analysis of cracked slopes under earthquakes are introduced: the pseudo-static method(with the factor of safety(Fs) as an evaluation index), and the displacement-based method(with the seismic displacement as an evaluation index). The pseudo-static method can only determine the instantaneous stability state of the cracked slope, yet the displacement-based methodreflects the stability variation of cracked slopes during earthquakes. The results indicate that the nondimensional strength parameters affect the factor of safety and seismic displacement of slopes significantly. The non-dimensional strength parameter(n) controlling the curvature of strength function shapes on the slope stability is affected by other parameters. Owing to cracks, the effect of non-dimensional strength parameters on seismic displacement becomes more significant.展开更多
The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair...The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair costs,repair time and number of casualties. This paper reviews current tools for PBEE,including the PACT software,and examines the possibility of extending the innovative displacement-based assessment approach as a simplified structural analysis option for performance assessment. Details of the displacement-based s+eismic assessment method are reviewed and a simple means of quickly assessing multiple hazard levels is proposed. Furthermore,proposals for a simple definition of collapse fragility and relations between equivalent single-degree-of-freedom characteristics and multi-degree-of-freedom story drift and floor acceleration demands are discussed,highlighting needs for future research. To illustrate the potential of the methodology,performance measures obtained from the simplified method are compared with those computed using the results of incremental dynamic analyses within the PEER performance-based earthquake engineering framework,applied to a benchmark building. The comparison illustrates that the simplified method could be a very effective conceptual seismic design tool. The advantages and disadvantages of the simplified approach are discussed and potential implications of advanced seismic performance assessments for conceptual seismic design are highlighted through examination of different case study scenarios including different structural configurations.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional id...Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.展开更多
This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting pot...This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.展开更多
In displacement-based seismic design, constant-ductility strength demand spectra (CDSDS) are very useful for preliminary design of new structures where the global displacement ductility capacity is known. The CDSDS ...In displacement-based seismic design, constant-ductility strength demand spectra (CDSDS) are very useful for preliminary design of new structures where the global displacement ductility capacity is known. The CDSDS can provide the required inelastic lateral strength of new structures from the required elastic lateral strength. Based on a statistical study of nonlinear time-history for an SDOF system, the mean CDSDS corresponding to four site conditions are presented and approximate expressions of the inelastic spectra are proposed, which are functions of the structural period and ductility level. The effects of site conditions, structural period, level of ductility, damping and post-yield stiffness of structures on CDSDS are also investigated. It is concluded that site conditions, ductility level and structural period have important effects on the CDSDS and damping, post-yield stiffness effects are rather complex and of minor importance. The damping, post-yield stiffness effects depend on both the level of ductility and the natural period of structures.展开更多
A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successful...A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.展开更多
Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is...Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today.展开更多
This paper focuses on damage control design of SMA dampers in steel frame piers.A parametric study based on time history analyses is carried out on frametyped bridge piers with axial-type SMA damping device.The parame...This paper focuses on damage control design of SMA dampers in steel frame piers.A parametric study based on time history analyses is carried out on frametyped bridge piers with axial-type SMA damping device.The parameters examined are design parameters of strength ratioαF and stiffness ratioαK.Seismic performance indexes on displacement and strain are investigated under three JRA recommended Level 2 Ground TypeПstrong earthquake motions.Design recommendations are suggested following the results of the parametric study.展开更多
Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displ...Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods,in terms of design steps,advantages/disadvantages,and structure responses.In addition,this paper investigates the building height below which the HW seismic moment demand can be properly controlled.First,3-story,9-story,and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs.Secondly,HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods,called HWFs and HWBBFs,respectively.Thirdly,nonlinear time history analyses are conducted to compare the structural responses of the MRFs,HWBBFs and HWFs in earthquakes.The results show the following.1)HW seismic force demands increase as structural height increases,which may lead to uneconomical HW design.The HW seismic moment demand can be properly controlled when the building is lower than nine stories.2)The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process,as well as better achieving the design target displacement.展开更多
Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements ...Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.展开更多
文摘In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.
基金International Science&Technology Cooperation Program of China under Grant No.2014DFA70950Tsinghua University Initiative Scientific Research Program under Grant No.2012THZ02-1National Natural Science Foundation of China under Grant No.91315301
文摘This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
基金financially supported by the National Key Research and Development Program of China (2017YFC1501001)National Natural Science Foundation of China (51478477, 41672286, 51408511, 41530639 and 41761144080)+1 种基金Science & Technology Department of Sichuan Province(2017JQ0042)the program of China Scholarship Council
文摘Cracks in rock or soil slopes influence the stability and durability of the slopes. Seismic forces can trigger slope disasters, particularly in the cracked slopes. Considering the nonlinear characteristics of materials, the more generalized nonlinear failure criterion proposed by Baker is adopted. The influence of non-dimensional strength parameters on the stability of cracked slopes under earthquakes is performed using the upper bound limit analysis. The seismic displacement is calculated by adopting the logarithmic spiral failure surface according to the sliding rigid block model. Based on the existing studies, two methods for the stability analysis of cracked slopes under earthquakes are introduced: the pseudo-static method(with the factor of safety(Fs) as an evaluation index), and the displacement-based method(with the seismic displacement as an evaluation index). The pseudo-static method can only determine the instantaneous stability state of the cracked slope, yet the displacement-based methodreflects the stability variation of cracked slopes during earthquakes. The results indicate that the nondimensional strength parameters affect the factor of safety and seismic displacement of slopes significantly. The non-dimensional strength parameter(n) controlling the curvature of strength function shapes on the slope stability is affected by other parameters. Owing to cracks, the effect of non-dimensional strength parameters on seismic displacement becomes more significant.
文摘The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair costs,repair time and number of casualties. This paper reviews current tools for PBEE,including the PACT software,and examines the possibility of extending the innovative displacement-based assessment approach as a simplified structural analysis option for performance assessment. Details of the displacement-based s+eismic assessment method are reviewed and a simple means of quickly assessing multiple hazard levels is proposed. Furthermore,proposals for a simple definition of collapse fragility and relations between equivalent single-degree-of-freedom characteristics and multi-degree-of-freedom story drift and floor acceleration demands are discussed,highlighting needs for future research. To illustrate the potential of the methodology,performance measures obtained from the simplified method are compared with those computed using the results of incremental dynamic analyses within the PEER performance-based earthquake engineering framework,applied to a benchmark building. The comparison illustrates that the simplified method could be a very effective conceptual seismic design tool. The advantages and disadvantages of the simplified approach are discussed and potential implications of advanced seismic performance assessments for conceptual seismic design are highlighted through examination of different case study scenarios including different structural configurations.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
文摘Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.
基金the Research Grants Council of Hong Kong Under Project No. HKU 7023/99E and HKU 7002/00EThe Ministry of Science and Technology of PRC and The Bureau of Science and Technology of Guangzhou Under Project No. 2004CCA03300 and No.2004Z1-E0051
文摘This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.
基金Research Fund for the Doctoral Program of Higher Education (20030213042) and Heilongjiang Natural Science Foundation Under Grant No.ZJG03-03
文摘In displacement-based seismic design, constant-ductility strength demand spectra (CDSDS) are very useful for preliminary design of new structures where the global displacement ductility capacity is known. The CDSDS can provide the required inelastic lateral strength of new structures from the required elastic lateral strength. Based on a statistical study of nonlinear time-history for an SDOF system, the mean CDSDS corresponding to four site conditions are presented and approximate expressions of the inelastic spectra are proposed, which are functions of the structural period and ductility level. The effects of site conditions, structural period, level of ductility, damping and post-yield stiffness of structures on CDSDS are also investigated. It is concluded that site conditions, ductility level and structural period have important effects on the CDSDS and damping, post-yield stiffness effects are rather complex and of minor importance. The damping, post-yield stiffness effects depend on both the level of ductility and the natural period of structures.
基金National Natural Science Foundation of China(No.10872128)
文摘A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.
文摘Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today.
基金The study was supported in part by grants from the Advanced Research Center for Seismic Experiments and Computations,Meijo University.
文摘This paper focuses on damage control design of SMA dampers in steel frame piers.A parametric study based on time history analyses is carried out on frametyped bridge piers with axial-type SMA damping device.The parameters examined are design parameters of strength ratioαF and stiffness ratioαK.Seismic performance indexes on displacement and strain are investigated under three JRA recommended Level 2 Ground TypeПstrong earthquake motions.Design recommendations are suggested following the results of the parametric study.
基金financially supported by the National Natural Science Foundation of China(Grant No.51708166)the Natural Science Foundation of Anhui Province(No.2208085ME150).
文摘Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods,in terms of design steps,advantages/disadvantages,and structure responses.In addition,this paper investigates the building height below which the HW seismic moment demand can be properly controlled.First,3-story,9-story,and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs.Secondly,HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods,called HWFs and HWBBFs,respectively.Thirdly,nonlinear time history analyses are conducted to compare the structural responses of the MRFs,HWBBFs and HWFs in earthquakes.The results show the following.1)HW seismic force demands increase as structural height increases,which may lead to uneconomical HW design.The HW seismic moment demand can be properly controlled when the building is lower than nine stories.2)The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process,as well as better achieving the design target displacement.
基金the National Natural Science Foundation of China(No.10872128)
文摘Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.