We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is forme...We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. .展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown ...DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms.展开更多
The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion...The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion-based artificial immune algorithm (DCAIA) is proposed to overcome defects of the classical artificial immune al- gorithm (CAIA) in this paper. Compared with genetic algorithm (GA) and CAIA, DCAIA is good for solving the prob- lem of precocity,holding the diversity of antibody, and enhancing convergence rate.展开更多
An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measur...An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.展开更多
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis...Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.展开更多
With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology...With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various fa...This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance.展开更多
Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori...Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.展开更多
The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterat...The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.展开更多
The inter-cycle correlation of fission source distributions(FSDs)in the Monte Carlo power iteration process results in variance underestimation of tallied physical quantities,especially in large local tallies.This stu...The inter-cycle correlation of fission source distributions(FSDs)in the Monte Carlo power iteration process results in variance underestimation of tallied physical quantities,especially in large local tallies.This study provides a mesh-free semiquantitative variance underestimation elimination method to obtain a credible confidence interval for the tallied results.This method comprises two procedures:Estimation and Elimination.The FSD inter-cycle correlation length is estimated in the Estimation procedure using the Sliced Wasserstein distance algorithm.The batch method was then used in the elimination procedure.The FSD inter-cycle correlation length was proved to be the optimum batch length to eliminate the variance underestimation problem.We exemplified this method using the OECD sphere array model and 3D PWR BEAVRS model.The results showed that the average variance underestimation ratios of local tallies declined from 37 to 87%to within±5%in these models.展开更多
In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections...In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches.展开更多
文摘We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. .
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
文摘空间聚类是空间数据挖掘的重要手段之一。本文研究了一种基于质心点距离的Max-min distance空间聚类算法:通过加载园地图斑数据,计算其园地图斑质心,判断聚类中心之间的距离,并将符合条件的园地图斑进行聚类,最终将聚类结果可视化表达。本文的算法是利用Visual Studio 2017实验平台和ArcGIS Engine组件式开发环境,采用C#语言进行编写。实验结果表明:1)Max-mindistance聚类通过启发式的选择簇中心,克服了K-means选择簇中心过于邻近的缺点,能够适应嵩口镇等山区丘陵地区空间分布呈破碎的园地数据集分布,有效地实现园地的合理聚类;2)根据连片面积将园地空间聚类结果分为大中小三类,未来嵩口镇可以重点发展园地连片规模较大的村庄,形成规模化的青梅种植园。
基金supported by Fundamental Research Funds of Jilin University(No.SXGJQY2017-9,No.2017TD-19)the National Natural Science Foundation of China(No.61771219)
文摘DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms.
文摘The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion-based artificial immune algorithm (DCAIA) is proposed to overcome defects of the classical artificial immune al- gorithm (CAIA) in this paper. Compared with genetic algorithm (GA) and CAIA, DCAIA is good for solving the prob- lem of precocity,holding the diversity of antibody, and enhancing convergence rate.
文摘An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.
基金supported by the National Natural Science Foundation of China(61890930-5,61533002,61603012)the Major Science and Technology Program for Water Pollution Control and Treatment of China(2018ZX07111005)+1 种基金the National Key Research and Development Project(2018YFC1900800-5)Beijing Municipal Education Commission Foundation(KM201710005025)
文摘Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.
文摘With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
文摘This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance.
基金This work is supported by The National Science Fund for Distinguished Young Scholars (60725105) National Basic Research Program of China (973 Program) (2009CB320404)+5 种基金 Program for Changjiang Scholars and Innovative Research Team in University (IRT0852) The National Natural Science Foundation of China (60972048, 61072068) The Special Fund of State Key Laboratory (ISN01080301) The Major program of National Science and Technology (2009ZX03007- 004) Supported by the 111 Project (B08038) The Key Project of Chinese Ministry of Education (107103).
文摘Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natural Science Foundation of China(Grant No.61372172)
文摘The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.
基金supported by China Nuclear Power Engineering Co.,Ltd.Scientific Research Project(No.KY22104)the fellowship of China Postdoctoral Science Foundation(No.2022M721793).
文摘The inter-cycle correlation of fission source distributions(FSDs)in the Monte Carlo power iteration process results in variance underestimation of tallied physical quantities,especially in large local tallies.This study provides a mesh-free semiquantitative variance underestimation elimination method to obtain a credible confidence interval for the tallied results.This method comprises two procedures:Estimation and Elimination.The FSD inter-cycle correlation length is estimated in the Estimation procedure using the Sliced Wasserstein distance algorithm.The batch method was then used in the elimination procedure.The FSD inter-cycle correlation length was proved to be the optimum batch length to eliminate the variance underestimation problem.We exemplified this method using the OECD sphere array model and 3D PWR BEAVRS model.The results showed that the average variance underestimation ratios of local tallies declined from 37 to 87%to within±5%in these models.
基金This work was supported by the Ulsan City&Electronics and Telecommunications Research Institute(ETRI)grant funded by the Ulsan City[22AS1600,the development of intelligentization technology for the main industry for manufacturing innovation and Human-mobile-space autonomous collaboration intelligence technology development in industrial sites].
文摘In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches.