期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Quasi-three-dimensional high-lift wing design approach considering three-dimensional effects of slipstream for distributed electric propulsion aircraft
1
作者 Tianshi CAO Junqiang BAI +3 位作者 Yasong QIU Kai HAN Shaodong FENG Shilong YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期300-316,共17页
The efficient utilization of propeller slipstream energy is important for improving the ultra-short takeoff and landing capability of Distributed Electric Propulsion(DEP)aircraft.This paper presents a quasi-three-dime... The efficient utilization of propeller slipstream energy is important for improving the ultra-short takeoff and landing capability of Distributed Electric Propulsion(DEP)aircraft.This paper presents a quasi-three-dimensional(2.5D)high-lift wing design approach considering the three-dimensional(3D)effects of slipstream for DEP aircraft,aiming at maximizing the comprehensive lift enhancement benefit of the airframe-propulsion coupling unit.A high-precision and efficient momentum source method is adopted to simulate the slipstream effects,and the distributed propellers are replaced by a rectangular actuator disk to reduce the difficulty of grid generation and improve the grid quality.A detailed comparison of the 2.5D and 3D configurations based on the X-57 ModⅣis performed in terms of flow characteristics and computational cost to demonstrate the rationality of the above design approach.The optimization results of the high-lift wing of the X-57 ModⅣshow that the aerodynamic performance of the landing configuration is significantly improved,for instance,the lift coefficient increases by 0.094 at the angle of attack of 7°,and 0.097 at the angle of attack of 14°.This novel approach achieves efficient and effective design of high-lift wings under the influence of distributed slipstream,which has the potential to improve the design level of DEP aircraft. 展开更多
关键词 High-lift wing design Quasi-three-dimensional optimization Three-dimensional effects of slipstream distributed electric propulsion aircraft Ultra-short takeoff and landing
原文传递
Aerodynamic design of tractor propeller for high-performance distributed electric propulsion aircraft 被引量:6
2
作者 Kelei WANG Zhou ZHOU +1 位作者 Zhongyun FAN Jiahao GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第10期20-35,共16页
Aiming to maximize the aerodynamic performance of the Distributed Electric Propulsion(DEP)aircraft,a hybrid design framework which focuses on the aerodynamic performance of the propeller/wing integration has been deve... Aiming to maximize the aerodynamic performance of the Distributed Electric Propulsion(DEP)aircraft,a hybrid design framework which focuses on the aerodynamic performance of the propeller/wing integration has been developed and validated numerically.Variable-fidelity modelling for propeller aerodynamics has been used to achieve computational efficiency with reasonable accuracy.By optimizing the aerodynamic loading distributions on the tractor propeller disk,the induced slipstream is redistributed into a form that is beneficial for the wing downstream,based on which the propeller blade geometry is generated through a rapid inversed design procedure.As compared with the Minimum Induced Loss(MIL)propeller at a specified thrust level,significant improvements of both the lift-to-drag ratio of the wing and the propeller/wing integrated aerodynamic efficiency is achieved,which shows great promise to deliver aerodynamic benefits for the wing within the propeller slipstream without any additional devices. 展开更多
关键词 Aerodynamic loading distributions Aerodynamic performance distributed electric propulsion Hybrid design framework Propeller/wing integration Variable-fidelity propeller modelling and aerodynamic analyses methods
原文传递
Experimental research on aero-propulsion coupling characteristics of a distributed electric propulsion aircraft 被引量:3
3
作者 Xingyu ZHANG Wei ZHANG +2 位作者 Weilin LI Xiaobin ZHANG Tao LEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期201-212,共12页
Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propul... Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propulsion interaction effect of the wing section,we built a DEP demonstrator with 24"high-lift"Electric Ducted Fans(EDFs)distributed along the wing’s trailing edge.This paper explores and compares the aero-propulsion coupling characteristics under various upstream speed,throttle,and EDF mounting surface deflection angles using a series of wind tunnel tests.We compare various lift-augmentation power conditions to the clean configuration without propulsion unit under the experiment condition of 15-25 m/s freestream flow and angles of attack from-4°to 16°.The comparison of computational results to the experimental results verifies the effectiveness of the computational fluid dynamic analysis method and the modeling method for the DEP configuration.The results show that the EDFs can produce significant lift increment and drag reduction simultaneously,which is accordant with the potential benefit of Boundary Layer Ingestion(BLI)at low airspeed. 展开更多
关键词 Aero-propulsion coupling Boundary layer ingestion distributed electric propulsion Short Take-Off and Landing(STOL) Wind-tunnel experiment
原文传递
Aerodynamic performance of distributed electric propulsion with wing interaction 被引量:1
4
作者 Yao LEI Wen-jie YANG Yi-yong HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第1期27-39,共13页
Distributed electric propulsion(DEP)uses multiple propellers driven by motors distributed along the leading edge of the wing to produce beneficial aerodynamic interactions.However,the wing will be in the sliding flow ... Distributed electric propulsion(DEP)uses multiple propellers driven by motors distributed along the leading edge of the wing to produce beneficial aerodynamic interactions.However,the wing will be in the sliding flow of the propeller and the lift and drag characteristics of the wing will change accordingly.The performance of the propeller will also be affected by the wing in its rear.In this paper,combined with wind tunnel tests,the low Reynolds aerodynamic properties of multiple DEP structures are numerically simulated by solving the Reynolds averaged Navier-Stokes(RANS)equation of multiple reference frames(MRF)or slip grid technology.The results demonstrate that the lift and drag of DEP increase in all cases,with the magnitude depending on the angle of attack(AOA)and the relative positions of propellers and wing.When the AOA is less than 16°(stall AOA),the change of lift is not affected by it.By contrast,when the AOA is greater than 16°the L/D(lift-to-drag ratio)of the DEP system increases significantly.This is because the propeller slipstream delays laminar flow separation and increases the stall AOA.At the same time,the inflow and the downwash effect,which is generated on both sides of the rotating shaft,result in the actual AOA of the wing being greater than the free flow AOA with a fluctuation distribution of the lift coefficient along the span.Also,for the propeller in the DEP,the blocking effect of the wing and the vortex of the trailing edge of the wing result in a significant increase in thrust. 展开更多
关键词 distributed electric propulsion(DEP) AERODYNAMICS Low Reynolds numbers Wing interaction
原文传递
Design of hybrid-electric aircraft with fault-tolerance considerations
5
作者 Valerio MARCIELLO Francesco OREFICE +2 位作者 Fabrizio NICOLOSI Danilo CILIBERTI Pierluigi DELLA VECCHIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期160-178,共19页
The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been ex... The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been extensively discussed in literature,but steps towards higher levels of technological readiness,optimisation algorithms based on reliable weight estimation and simulationbased mission analysis are required.This paper focuses on the integration of a method for evaluating the lateral-directional controllability of an aircraft within a design chain that integrates aero-propulsive interactions,accurate modelling of the fuel system,and mid-fidelity estimation of the structural weight.Furthermore,the present work proposes a strategy for powerplant management in scenarios with an inoperative chain element.Benefits of hybrid-electric propulsion on the design of the vertical tail plane are evaluated involving the analysis of multiple failure scenarios and certification requirements.The proposed application concerns a commuter aircraft. 展开更多
关键词 distributed electric propulsion Failure management Fault-tolerance analysis Hybrid-electric aircraft Lateral-directional controllability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部