The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effe...The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effective temperature control is crucial to ensure fuel cell reliability and durability. This paper uses active disturbance rejection control in the thermal management system to maintain the operating temperature and the stack inlet and outlet temperature difference at the set value. First, key cooling system modules such as expansion tanks, coolant circulation pumps and radiators based on Simulink were built. Then, physical modeling and simulation of the fuel cell cooling system was carried out. In order to ensure the effectiveness of the control strategy and reduce the parameter tuning workload, an active disturbance rejection control parameter optimization method using an elite genetic algorithm was proposed. When the optimized control strategy responds to input disturbances, the maximum overshoot of the system is only 1.23% and can reach stability again in 30 s, so the fuel cell temperature can be controlled effectively. Simulation results show that the optimized control strategy can effectively control the stack temperature and coolant temperature difference under the influence of stepped charging current without interference or with interference, and has strong robustness and anti-interference capability.展开更多
In this paper,a new distributed consensus tracking protocol incorporating local disturbance rejection is devised for a multi-agent system with heterogeneous dynamic uncertainties and disturbances over a directed graph...In this paper,a new distributed consensus tracking protocol incorporating local disturbance rejection is devised for a multi-agent system with heterogeneous dynamic uncertainties and disturbances over a directed graph.It is of two-degree-of-freedom nature.Specifically,a robust distributed controller is designed for consensus tracking,while a local disturbance estimator is designed for each agent without requiring the input channel information of disturbances.The condition for asymptotic disturbance rejection is derived.Moreover,even when the disturbance model is not exactly known,the developed method also provides good disturbance-rejection performance.Then,a robust stabilization condition with less conservativeness is derived for the whole multi-agent system.Further,a design algorithm is given.Finally,comparisons with the conventional one-degree-of-freedombased distributed disturbance-rejection method for mismatched disturbances and the distributed extended-state observer for matched disturbances validate the developed method.展开更多
For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the freque...For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.展开更多
Aiming at the problems of output voltage fluctuation and current total harmonic distortion(THD)in the front stage totem-pole bridgeless PFC of two-stage V2G(Vehicle to Grid)vehicle-mounted bi-directional converter,a f...Aiming at the problems of output voltage fluctuation and current total harmonic distortion(THD)in the front stage totem-pole bridgeless PFC of two-stage V2G(Vehicle to Grid)vehicle-mounted bi-directional converter,a fuzzy linear active disturbance rejection control strategy for V2G front-stage AC-DC power conversion system is proposed.Firstly,the topologicalworkingmode of the totem-pole bridgeless PFC is analyzed,and themathematical model is established.Combined with the system model and the linear active disturbance rejection theory,a double closed-loop controller is designed with the second-order linear active disturbance rejection control as the voltage outer loop and PI control as the current inner loop.The controller can realize self-adaptive tuning of the proportional gain coefficient of the active disturbance rejection controller through fuzzy reasoning and realize self-adaptive control.Simulation and experimental results show that this method can better solve the problems of slow system response and high total harmonic distortion rate of input current and effectively improve the system’s robustness.展开更多
Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection ...Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.展开更多
This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic os...This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic oscillation,position the manipulator in a desired angle,and ensure the finitetime convergence of disturbances,we develop three disturbance observers(DOs)and boundary controllers.Under the derived DOs-based control schemes,the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time.In the end,numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.展开更多
The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this ...The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve last response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.展开更多
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, t...In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.展开更多
A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed loc...A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclu- sively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Dis^n'bance Rejection Control (ADRC) technology. This technology is com- posed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.展开更多
Waste water treatment process(WWTP)control has been attracting more and more attention.However,various undesired factors,such as disturbance,uncertainties,and strong nonlinear couplings,propose big challenges to the c...Waste water treatment process(WWTP)control has been attracting more and more attention.However,various undesired factors,such as disturbance,uncertainties,and strong nonlinear couplings,propose big challenges to the control of a WWTP.In order to improve the control performance of the closed-loop system and guarantee the discharge requirements of the effluent quality,rather than take the model dependent control approaches,an active disturbance rejection control(ADRC)is utilized.Based on the control signal and system output,a phase optimized ADRC(POADRC)is designed to control the dissolved oxygen and nitrate concentration in a WWTP.The phase advantage of the phase optimized extended state observer(POESO),convergence of the POESO,and stability of the closed-loop system are analyzed from the theoretical point of view.Finally,a commonly accepted benchmark simulation model no.1.(BSM1)is utilized to test the POESO and POADRC.Linear active disturbance rejection control(LADRC)and the suggested proportion-integration(PI)control are taken to make a comparative research.Both system responses and performance index values confirm the advantage of the POADRC over the LADRC and the suggested PI control.Numerical results show that,as a result of the leading phase of the total disturbance estimation,the POESO based POADRC is an effective and promising way to control the dissolved oxygen and nitrate concentration so as to ensure the effluent quality of a WWTP.展开更多
A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept...A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust.展开更多
Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based o...Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.展开更多
A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS...A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.展开更多
The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturba...The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.展开更多
This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater ve...This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified.展开更多
Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. T...Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM.展开更多
This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade ...This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade form consisting of a continuous time estimator,a continuous observation error predictor,and a reset compensator.The proposed ESO estimates not only the system state but also the total uncertainty,which may include the effects of the external perturbation,the parametric uncertainty,and the unknown nonlinear dynamics.Such a reset compensator,whose state is reset to zero whenever a new measurement arrives,is used to calibrate the predictor.Due to the cascade structure,the resulting error dynamics system is presented in a non-hybrid form,and accordingly,analyzed in a general sampled-data system framework.Based on the output of the ESO,a continuous ADRC law is then developed.The convergence of the resulting closed-loop system is proved under given conditions.Two numerical simulations demonstrate the effectiveness of the proposed control method.展开更多
文摘The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effective temperature control is crucial to ensure fuel cell reliability and durability. This paper uses active disturbance rejection control in the thermal management system to maintain the operating temperature and the stack inlet and outlet temperature difference at the set value. First, key cooling system modules such as expansion tanks, coolant circulation pumps and radiators based on Simulink were built. Then, physical modeling and simulation of the fuel cell cooling system was carried out. In order to ensure the effectiveness of the control strategy and reduce the parameter tuning workload, an active disturbance rejection control parameter optimization method using an elite genetic algorithm was proposed. When the optimized control strategy responds to input disturbances, the maximum overshoot of the system is only 1.23% and can reach stability again in 30 s, so the fuel cell temperature can be controlled effectively. Simulation results show that the optimized control strategy can effectively control the stack temperature and coolant temperature difference under the influence of stepped charging current without interference or with interference, and has strong robustness and anti-interference capability.
基金supported by the National Natural Science Foundation of China(62003010,61873006,61673053)the Beijing Postdoctoral Research Foundation(Q6041001202001)+1 种基金the Postdoctoral Research Foundation of Chaoyang District(Q1041001202101)the National Key Research and Development Project(2018YFC1602704,2018YFB1702704)。
文摘In this paper,a new distributed consensus tracking protocol incorporating local disturbance rejection is devised for a multi-agent system with heterogeneous dynamic uncertainties and disturbances over a directed graph.It is of two-degree-of-freedom nature.Specifically,a robust distributed controller is designed for consensus tracking,while a local disturbance estimator is designed for each agent without requiring the input channel information of disturbances.The condition for asymptotic disturbance rejection is derived.Moreover,even when the disturbance model is not exactly known,the developed method also provides good disturbance-rejection performance.Then,a robust stabilization condition with less conservativeness is derived for the whole multi-agent system.Further,a design algorithm is given.Finally,comparisons with the conventional one-degree-of-freedombased distributed disturbance-rejection method for mismatched disturbances and the distributed extended-state observer for matched disturbances validate the developed method.
基金supported by the National Natural Science Foundation of China(61973175,61973172,62073177)the Key Technologies R&D Program of Tianjin(19JCZDJC32800)Tianjin Research Innovation Project for Postgraduate Students(2020YJSZXB02).
文摘For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.
基金supported by the Science and Technology Project of State Grid Corporation of China(W22KJ2722005)Tianyou Innovation Team of Lanzhou Jiaotong University(TY202009).
文摘Aiming at the problems of output voltage fluctuation and current total harmonic distortion(THD)in the front stage totem-pole bridgeless PFC of two-stage V2G(Vehicle to Grid)vehicle-mounted bi-directional converter,a fuzzy linear active disturbance rejection control strategy for V2G front-stage AC-DC power conversion system is proposed.Firstly,the topologicalworkingmode of the totem-pole bridgeless PFC is analyzed,and themathematical model is established.Combined with the system model and the linear active disturbance rejection theory,a double closed-loop controller is designed with the second-order linear active disturbance rejection control as the voltage outer loop and PI control as the current inner loop.The controller can realize self-adaptive tuning of the proportional gain coefficient of the active disturbance rejection controller through fuzzy reasoning and realize self-adaptive control.Simulation and experimental results show that this method can better solve the problems of slow system response and high total harmonic distortion rate of input current and effectively improve the system’s robustness.
基金supported by the National Natural Science Foundation of China(60774088)the National High Technology Research and Development Program of China(863 Program)(2009AA04Z132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090031110029)
文摘Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.
基金supported in part by National Natural Science Foundation of China(61803109)in part by the Innovative School Project of Education Department of Guangdong(2017KQNCX153)+3 种基金in part by the Science and Technology Planning Project of Guangzhou City(201904010494)in part by the Scientific Research Projects of Guangzhou Education Bureau(202032793)in part by the China Postdoctoral Science Foundation(2019M660463)in part by the Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing(FRFIDRY-19-024)。
文摘This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic oscillation,position the manipulator in a desired angle,and ensure the finitetime convergence of disturbances,we develop three disturbance observers(DOs)and boundary controllers.Under the derived DOs-based control schemes,the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time.In the end,numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.
基金Project supported by the National Basic Research Program (973) of China (No. 2006CB705400)the National Natural Science Foun- dation of China (No. 50575200)
文摘The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve last response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金supported in part by the Fundamental Research Funds for the Central Universities (No. 201964012)the Open Foundation of Henan Key Laboratory of Underwater Intelligent Equipment (No. KL02A1802)+1 种基金the National Natural Science Foundations of China (Nos. 61603361 and 51979256)the Shandong Provincial Natural Science Foundation (No. ZR2017MEE015)。
文摘In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.
基金The support of the National Nature Science Foundation of China(Nos.61074053 and 61374114)the Applied Basic Research Program of Ministry of Transport of China(No.2011-329-225-390)are gratefully acknowledged
文摘A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclu- sively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Dis^n'bance Rejection Control (ADRC) technology. This technology is com- posed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.
基金supported by the Key program of Beijing Municipal Education Commission(KZ201810011012)National Natural Science Foundation of China(61873005)Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Fiveyear Plan(CIT&TCD201704044)。
文摘Waste water treatment process(WWTP)control has been attracting more and more attention.However,various undesired factors,such as disturbance,uncertainties,and strong nonlinear couplings,propose big challenges to the control of a WWTP.In order to improve the control performance of the closed-loop system and guarantee the discharge requirements of the effluent quality,rather than take the model dependent control approaches,an active disturbance rejection control(ADRC)is utilized.Based on the control signal and system output,a phase optimized ADRC(POADRC)is designed to control the dissolved oxygen and nitrate concentration in a WWTP.The phase advantage of the phase optimized extended state observer(POESO),convergence of the POESO,and stability of the closed-loop system are analyzed from the theoretical point of view.Finally,a commonly accepted benchmark simulation model no.1.(BSM1)is utilized to test the POESO and POADRC.Linear active disturbance rejection control(LADRC)and the suggested proportion-integration(PI)control are taken to make a comparative research.Both system responses and performance index values confirm the advantage of the POADRC over the LADRC and the suggested PI control.Numerical results show that,as a result of the leading phase of the total disturbance estimation,the POESO based POADRC is an effective and promising way to control the dissolved oxygen and nitrate concentration so as to ensure the effluent quality of a WWTP.
基金Project(61273132)supported by the National Natural Foundation of ChinaProject(20110010010)supported by Higher School Specialized Research Fund for the Doctoral Program,China
文摘A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust.
基金supported by the Aviation Science Foundation(2013ZC12004)
文摘Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.
基金supported by the National Natural Science Foundation of China(No.51205191)
文摘A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.
基金supported by the National Natural Science Foundation of China(6077401360925012)+1 种基金the National High Technology Research and Development Program of China(863 Program) (2008AA12A216)the National Basic Research Program of China (973 Program)(2009CB 724002)
文摘The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.
基金supported by the National Natural Science Foundation of China (6197317561973172)Tianjin Natural Science Foundation (19JCZDJC32800)。
文摘This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified.
文摘Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM.
基金supported by the National Natural Science Foundation of China(61833016,61873295).
文摘This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade form consisting of a continuous time estimator,a continuous observation error predictor,and a reset compensator.The proposed ESO estimates not only the system state but also the total uncertainty,which may include the effects of the external perturbation,the parametric uncertainty,and the unknown nonlinear dynamics.Such a reset compensator,whose state is reset to zero whenever a new measurement arrives,is used to calibrate the predictor.Due to the cascade structure,the resulting error dynamics system is presented in a non-hybrid form,and accordingly,analyzed in a general sampled-data system framework.Based on the output of the ESO,a continuous ADRC law is then developed.The convergence of the resulting closed-loop system is proved under given conditions.Two numerical simulations demonstrate the effectiveness of the proposed control method.