Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal b...Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.展开更多
The control problem of multiple-flexible-link manipulators( MFLMs) is studied in this paper.The dynamic model of MFLM is derived and separated into two-time scale by utilizing the singular perturbation technique. The ...The control problem of multiple-flexible-link manipulators( MFLMs) is studied in this paper.The dynamic model of MFLM is derived and separated into two-time scale by utilizing the singular perturbation technique. The active disturbance rejection control( ADRC) is adopted to the slow subsystem to track a desired trajectory. The proposed ADRC structure preshapes the desired trajectory by utilizing the tracking differentiator,estimates the disturbance and internal states with an extended state observer,and guarantees a robust performance by combining a feedback controller with a feedforward term. Two types of feedback controllers are designed,proportional derivative( PD) controller and nonlinear PD( NPD) controller. For the fast subsystem,a fast stabilizing control is designed according to the standard linear quadratic regulator approach. Simulations are performed to evaluate the proposed control scheme.Results show that,compared with the traditional PD controller,the ADRC structure based control scheme has smaller overshot and shorter settling time,suppresses vibration quickly,and is robust to the maneuver speed. In general,the control scheme utilizing ADRC structure and NPD feedback controller shows better performance.展开更多
Sleep-wake rhythm disturbances,which are characterized by abnormal sleep timing or duration,are associated with cognitive dysfunction.Photoacoustic treatments including light and sound stimulation have been found to b...Sleep-wake rhythm disturbances,which are characterized by abnormal sleep timing or duration,are associated with cognitive dysfunction.Photoacoustic treatments including light and sound stimulation have been found to be effective in modulating sleep patterns and improving cognitive behavior in abnormal sleep-wake pattern experiments.In this study,we examined whether light and sound interventions could reduce sleep-wake pattern disturbances and memory deficits in a sleep rhythm disturbance model.We established a model of sleep rhythm disturbance in C57 BL/6 J mice via a sleep deprivation method involving manual cage tapping,cage jostling,and nest disturbance.We used a Mini Mitter radio transmitter device to monitor motor activity in the mice and fear conditioning tests to assess cognitive function.Our results indicated that an intervention in which the mice were exposed to blue light(40-Hz flickering frequency)for 1 hour during their subjective daytime significantly improved the 24-hour-acrophase shift and reduced the degree of memory deficit induced by sleep deprivation.However,interventions in which the mice were exposed to a 40-Hz blue light at offset time or subjective night time points,as well as 2 Hz-blue light at 3 intervention time points(subjective day time,subjective night time,and offset time points),had no positive effects on circadian rhythm shift or memory deficits.Additionally,a 2000-Hz sound intervention during subjective day time attenuated the24-hour-acrophase shift and memory decline,while 440-Hz and 4000-Hz sounds had no effect on circadian rhythms.Overall,these results demonstrate that photoacoustic treatment effectively corrected abnormal sleep-wake patterns and cognitive dysfunction associated with sleep-deprivation-induced disturbances in sleep-wake rhythm.All animal experiments were approved by the Experimental Animal Ethics Committee of Drum Tower Hospital Affiliated to the Medical College of Nanjing University,China(approval No.20171102)on November20,2017.展开更多
Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism ...Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation,hampering their use as records of regional geological events.This work focuses on strongly reworked magnetite-quartz-rich rocks from the São Josédo Campestre Massif,one of the oldest fragments of preserved crust in South America.The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event.To address genetic ambiguities,we analyzed their magnetite and pyroxene chemistry,wholerock geochemistry,and Sm-Nd isotopes.Magnetite chemistry indicates that pyroxene-poor iron formations(Type B)are low in trace elements such as Ti,Al,V,and Mn,suggesting a chemical similarity to iron formations elsewhere.In contrast,magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems,such as skarn and IOCG.The^(147)Sm/^(144)Nd of these rocks show substantial variation even at the outcrop scale,indicating a locally-controlled,highly heterogeneous mixture of Archean,Paleoproterozoic,and Neoproterozoic sources.Therefore,our geochemical tools point out to heterogenous signatures of these magnetitequartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic.We interpret that the studied São Josédo Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event.These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry or the primary isotopic signatures.Our study indicates that metamorphism can selectively affect chemical proxies used to study iron formations and undermine the genetic classification of iron ores.Thus,these proxies should be carefully applied in the interpretation of syn-depositional environments of polydeformed belts.展开更多
In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear...In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear systems like PMSM.All three PI controllers in the conventional vector controlled speed drive are replaced by FOPI controllers. Design of these FOPI controllers is based on the locally linearized model of PMSM around an operating point. This operating point changes with the load torque. The novelty of the work reported here is in use of Non Linear Disturbance Observer(NLDO) to estimate load torque to obtain this new operating point. All three FOPI controllers are then designed adaptively using this new operating point. The scheme is tested on simulation using MATLAB/SIMULINK and results are presented.展开更多
Winding and web transport systems are subjected to quasi-periodic disturbances of the web tension due to the eccentricity and the non-circularity of the reel and rolls. The disturbances induced by the non-circularity ...Winding and web transport systems are subjected to quasi-periodic disturbances of the web tension due to the eccentricity and the non-circularity of the reel and rolls. The disturbances induced by the non-circularity and eccentricity of the rolls are quasi-periodic with a frequency that varies with their rotation speed. An adaptive method of rejection of these disturbances is proposed in this paper. It is based on a phase-locked loop structure that estimates simutaneously the phase and magnitude of the perturbation and then cancels it. This algorithm can be plugged in an existing industrial controller. The stability and robustness of the algorithm are also discussed. The ability of the algorithm to reject quasi-periodic disturbances with slowly varying frequencies is shown through simulation results.展开更多
Oil and gas exploration and production activities (OGEPA) can produce surface disturbances created by the construction of roads, well pads, oil wells, pipelines, production facilities and storage pits. These alteratio...Oil and gas exploration and production activities (OGEPA) can produce surface disturbances created by the construction of roads, well pads, oil wells, pipelines, production facilities and storage pits. These alterations can range from landscape conversion to transformation depending on location, regulations and enforcement, environmental best practices and state vs. multinational management. Though not known as a major oil and gas state, Florida is ranked 23rd in gas and 24th in oil production nationally. Jay oilfield, located in West Florida’s panhandle region, is the largest and top producer in the state. Though production peaked in 1979, a nationwide upsurge is taking place that could affect Florida. The accounting from above approach proposed here is well suited to understand the role that the infrastructure surface footprint has on West Florida’s landscape and how to monitor potential changes underway. It involves remote sensing, GIS techniques and landscape ecology metrics to quantify surface disturbance in Santa Rosa County’s six oilfields and then ranks each field based on environmental performance (sustainability). Findings suggest that agricultural conversion is the leading driver of land-use and land-cover (LULC) change, while OGEPA have created small-scale surface alterations. This paper’s approach can help oil companies, land managers and local government authorities understand the spatial extent of OGEPA onshore alterations and plan future scenarios, particularly as drilling and production increase in the current shale revolution occurring throughout the US, as well as expanded drilling planned for Florida.展开更多
Land cover change is a major challenge for many developing countries. Spatiotemporal information on this change is essential for monitoring global terrestrial ecosystem carbon, climate and biosphere exchange, and land...Land cover change is a major challenge for many developing countries. Spatiotemporal information on this change is essential for monitoring global terrestrial ecosystem carbon, climate and biosphere exchange, and land use management. A combination of LST and the EVI indices in the global disturbance index (DI) has been proven to be useful for detecting and monitoring of changes in land covers at continental scales. However, this model has not been adequately applied or assessed in tropical regions. We aimed to demonstrate and evaluate the DI algorithm used to detect spatial change in land covers in Lao tropical forests. We used the land surface temperature and enhanced vegetation index of the Moderate Resolution Imaging Spectroradiometer time-series products from 2006-2012. We used two dates Google EarthTM images in 2006 and 2012 as ground truth data for accuracy assessment of the model. This research demonstrated that the DI was capable of detecting vegetation changes during seven-year periods with high overall accuracy;however, it showed low accuracy in detecting vegetation decrease.展开更多
Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters....Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters. Simulation results show that performance tests in load change and coal quality change achieve better dynamic responses and larger scales of rejecting coal quality disturbances. The study provides an alternative to choose parameters for other control schemes of the ALSTOM gasifier.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
Windthrow plays a critical role in maintaining species diversity in temperate forests. Do large-scale strong wind events(i.e., tropical cyclones, including hurricanes,typhoons and severe cyclonic storms) increase tree...Windthrow plays a critical role in maintaining species diversity in temperate forests. Do large-scale strong wind events(i.e., tropical cyclones, including hurricanes,typhoons and severe cyclonic storms) increase tree diversity in severely damaged forest areas? Do hurricanes(tropical cyclones that occurs in the Atlantic Ocean and northeastern Pacific Ocean) lead to altered relative abundance of shade-tolerant and shade-intolerant species? Did historic hurricanes alter the succession trajectory of the damaged forests? We used nearly 70-year tree demographic data to assess the effects of two major hurricanes on woody species diversity in Piedmont forests, North Carolina, USA. Species richness(S) and Shannon–Wiener's diversity index(H') were used to evaluate the changes in tree diversity. The changes in composition were assessed with Nonmetric Multidimensional Scaling. The pre-hurricane successional phase can strongly influence both the damage severity and subsequent responses. Although there is often an immediate drop in diversity following a hurricane, understory tree diversity quickly increases to levels that exceed those prior to the disturbance. This leads to an increase in diversity in stands that were substantially damaged. Hurricanes significantly decrease the dominance of shade-intolerant canopy species while increasing preestablished, more shade-tolerant species. We conclude that large, and infrequent hurricanes help to maintain local tree diversity, but also accelerate the increase in dominance of understory species such as red maple and beech.展开更多
Instrumental and environmental disturbances do affect FG5 absolute gravimeter observations and the estimated gravity values, sometimes to the degree that entire measurement campaigns are discarded. We propose a method...Instrumental and environmental disturbances do affect FG5 absolute gravimeter observations and the estimated gravity values, sometimes to the degree that entire measurement campaigns are discarded. We propose a method which moves towards the re-assessment of previously discarded observations. Once an estimate of the frequency and amplitude of a disturbance in a FG5 data set exists, the proposed method can estimate its impact on the estimated gravity value. This is performed through a Gaussian Bell Summation approach of the functional relationship between disturbance frequency and standard deviation of gravity. The filtering of the identified disturbance is realized through a modification of the functional model of the equation of motion in the least squares adjustment of FG5 observations. The results reveal that the Gaussian Bell Summation approximates the frequency—gravity impact relationship sufficiently well with negligible uncertainties, while the accuracy of the detected disturbance frequency defines a limiting factor for the gravity impact estimation. A realistic disturbance of 15 Hz with an amplitude of 1.5 nm had an impact of ≈48 [μGal] on the gravity estimate. The proposed filter approach reduced the impact to ≈12 [μGal], with the remaining effect being almost entirely associated to the uncertainty in disturbance frequency detection.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A slid...A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.展开更多
This paper reviewed the literature on newer threedimensional imaging techniques and their applications in diagnosis and treatment planning of various dental anomalies. Developmental anomalies can occur during any of t...This paper reviewed the literature on newer threedimensional imaging techniques and their applications in diagnosis and treatment planning of various dental anomalies. Developmental anomalies can occur during any of the developmental stages and are manifested clinically after the tooth is fully formed. These dental anomalies may involve a single tooth, a group of teeth, or the entire dentition. Two-dimensional diagnosticimaging, including periapical, occlusal, panoramic, or cephalometric radiographs are essential in localization and management of morphological and eruptive disorders. However, due to their inherent limitations such as insufficient precision because of unusual projection errors and lack of information about spatial relationships, these methods are considered unreliable. Thus, the use of newer image acquisition techniques that allow comprehensive three dimensional imaging and visualization of dental abnormalities is highly recommended for making a confirmatory diagnosis. The significance of accurate endodontic, surgical and orthodontic treatment planning in dental abnormalities cannot be overstated as it pertains to critical anatomic landmarks such as proximity to adjacent teeth or the mandibular canal. The precise information on spatial relationships provided by multiplanar imaging helps the dental surgeon to establish more accurate diagnosis, management strategies and also increases the patient safety. This review highlights the use of high-end diagnostic imaging modalities in diagnosis of the various morphologic and eruptive dental abnormalities.展开更多
In this study, we examined the influence of changes in the degree and frequency of disturbance in estuarine tidal flats on the annual salt marsh plant communities (Suaeda maritima, Artemisia fukudo) in Mie Prefecture,...In this study, we examined the influence of changes in the degree and frequency of disturbance in estuarine tidal flats on the annual salt marsh plant communities (Suaeda maritima, Artemisia fukudo) in Mie Prefecture, Japan. Suaeda maritima and Artemisia fukudo communities occur in the branch river of the Kushida River. Although the areas occupied by these communities were very small in 2006, the Suaeda maritima community expanded significantly to 3609 m2 in 2008, and the Artemisia fukudo community expanded significantly to 2726 m2 in 2008 and 10,396 m2 in 2010. Before the onset of the investigation period in 2006, the overflow warning water level (3.5 m) and the flood fighting corps standby water level (3.0 m) each occurred on one day in August 2004 and October 2004, respectively;at those times, the water volume exceeded 1000 m3·s-1 and 1500 m3·s-1, respectively. We suggest that because much of the estuarine tidal flat erodes when the water volume exceeds 1000 m3·sǃ, the establishment of the Suaeda maritima and Artemisia fukudo communities is delayed until sufficient substrate is formed by the deposition of new sediment. In contrast, a water level of 2 - 3 m was observed on one day each in 2005, 2007 and 2009, with average water volumes of 488.5, 566.4 and 690.1 m3·s-1, respectively. We suggest that following the repeated disturbances caused by water levels of 1 - 3 m and flow volumes of 500 - 700 m3·s-1 over the bare ground exposed after flooding and erosion, Suaeda maritima is a pioneer species that colonizes on bare ground deposited by sediment transported from upstream and the sea during high tides, and following the same level of disturbance, Artemisia fukudo is secondary colonizer that has germinated and grown on the sediment deposited on the Suaeda maritima community.展开更多
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a...Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.展开更多
Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and use...Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands.The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth.Due to crab disturbance,nitrogen fuxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs.In summer,NH-N showed a positive flux from the sediment to the overlying water,but NO2-N and NOg-N showed positive fluxes from the sediment to the overlying water only in early stages.In winter,NH-N showed a positive flux from the sediment to the overlying water,but NO-N and NO,-N both exhibited positive and negative fluxes.These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.展开更多
基金supported by grants from Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA22096018(to JY)Guangxi Key Research and Development Program,No.AB22080053(to DD)+6 种基金Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA23023004(to MZ)the National Natural Science Foundation of China,Nos.82260021(to MZ),82060315(to DD)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2021GXNSFBA220007(to GD)Clinical Research Center For Medical Imaging in Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection in Hunan Province,No.2020SK3006(to JL)Science and Technology Innovation Program of Hunan Province,No.2021RC4016(to JL)Key Project of the Natural Science Foundation of Hunan Province,No.2024JJ3041(to JL).
文摘Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.
基金Sponsored by the China Postdoctoral Science Foundation(Grant No.2014M560255)the Open Research Fund of the State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2013-ZD-05)+1 种基金the Heilongjiang Postdoctoral Found(Grant No.LBH-Z14107)the Special Foundation of Heilongjiang Postdoctoral Science(Grant No.LBH-TZ1609)
文摘The control problem of multiple-flexible-link manipulators( MFLMs) is studied in this paper.The dynamic model of MFLM is derived and separated into two-time scale by utilizing the singular perturbation technique. The active disturbance rejection control( ADRC) is adopted to the slow subsystem to track a desired trajectory. The proposed ADRC structure preshapes the desired trajectory by utilizing the tracking differentiator,estimates the disturbance and internal states with an extended state observer,and guarantees a robust performance by combining a feedback controller with a feedforward term. Two types of feedback controllers are designed,proportional derivative( PD) controller and nonlinear PD( NPD) controller. For the fast subsystem,a fast stabilizing control is designed according to the standard linear quadratic regulator approach. Simulations are performed to evaluate the proposed control scheme.Results show that,compared with the traditional PD controller,the ADRC structure based control scheme has smaller overshot and shorter settling time,suppresses vibration quickly,and is robust to the maneuver speed. In general,the control scheme utilizing ADRC structure and NPD feedback controller shows better performance.
基金supported by the National Natural Science Foundation of China,No.81730033(to XPG),No.81701371(to TJX),No.81801380(to XZ)the Natural Science Foundation of Jiangsu Province of China,No.BK20170654(to TJX),No.BK20170129(to XZ)the Key Talent’s 13th Five-Year Plan for Strengthening Health of Jiangsu Province of China,No.ZDRCA2016069(to XPG)
文摘Sleep-wake rhythm disturbances,which are characterized by abnormal sleep timing or duration,are associated with cognitive dysfunction.Photoacoustic treatments including light and sound stimulation have been found to be effective in modulating sleep patterns and improving cognitive behavior in abnormal sleep-wake pattern experiments.In this study,we examined whether light and sound interventions could reduce sleep-wake pattern disturbances and memory deficits in a sleep rhythm disturbance model.We established a model of sleep rhythm disturbance in C57 BL/6 J mice via a sleep deprivation method involving manual cage tapping,cage jostling,and nest disturbance.We used a Mini Mitter radio transmitter device to monitor motor activity in the mice and fear conditioning tests to assess cognitive function.Our results indicated that an intervention in which the mice were exposed to blue light(40-Hz flickering frequency)for 1 hour during their subjective daytime significantly improved the 24-hour-acrophase shift and reduced the degree of memory deficit induced by sleep deprivation.However,interventions in which the mice were exposed to a 40-Hz blue light at offset time or subjective night time points,as well as 2 Hz-blue light at 3 intervention time points(subjective day time,subjective night time,and offset time points),had no positive effects on circadian rhythm shift or memory deficits.Additionally,a 2000-Hz sound intervention during subjective day time attenuated the24-hour-acrophase shift and memory decline,while 440-Hz and 4000-Hz sounds had no effect on circadian rhythms.Overall,these results demonstrate that photoacoustic treatment effectively corrected abnormal sleep-wake patterns and cognitive dysfunction associated with sleep-deprivation-induced disturbances in sleep-wake rhythm.All animal experiments were approved by the Experimental Animal Ethics Committee of Drum Tower Hospital Affiliated to the Medical College of Nanjing University,China(approval No.20171102)on November20,2017.
基金supported by the National Council for the Improvement of Higher Education(CAPES)the Brazilian Council for Research and Technological Development(CNPQ)。
文摘Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation,hampering their use as records of regional geological events.This work focuses on strongly reworked magnetite-quartz-rich rocks from the São Josédo Campestre Massif,one of the oldest fragments of preserved crust in South America.The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event.To address genetic ambiguities,we analyzed their magnetite and pyroxene chemistry,wholerock geochemistry,and Sm-Nd isotopes.Magnetite chemistry indicates that pyroxene-poor iron formations(Type B)are low in trace elements such as Ti,Al,V,and Mn,suggesting a chemical similarity to iron formations elsewhere.In contrast,magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems,such as skarn and IOCG.The^(147)Sm/^(144)Nd of these rocks show substantial variation even at the outcrop scale,indicating a locally-controlled,highly heterogeneous mixture of Archean,Paleoproterozoic,and Neoproterozoic sources.Therefore,our geochemical tools point out to heterogenous signatures of these magnetitequartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic.We interpret that the studied São Josédo Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event.These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry or the primary isotopic signatures.Our study indicates that metamorphism can selectively affect chemical proxies used to study iron formations and undermine the genetic classification of iron ores.Thus,these proxies should be carefully applied in the interpretation of syn-depositional environments of polydeformed belts.
文摘In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear systems like PMSM.All three PI controllers in the conventional vector controlled speed drive are replaced by FOPI controllers. Design of these FOPI controllers is based on the locally linearized model of PMSM around an operating point. This operating point changes with the load torque. The novelty of the work reported here is in use of Non Linear Disturbance Observer(NLDO) to estimate load torque to obtain this new operating point. All three FOPI controllers are then designed adaptively using this new operating point. The scheme is tested on simulation using MATLAB/SIMULINK and results are presented.
文摘Winding and web transport systems are subjected to quasi-periodic disturbances of the web tension due to the eccentricity and the non-circularity of the reel and rolls. The disturbances induced by the non-circularity and eccentricity of the rolls are quasi-periodic with a frequency that varies with their rotation speed. An adaptive method of rejection of these disturbances is proposed in this paper. It is based on a phase-locked loop structure that estimates simutaneously the phase and magnitude of the perturbation and then cancels it. This algorithm can be plugged in an existing industrial controller. The stability and robustness of the algorithm are also discussed. The ability of the algorithm to reject quasi-periodic disturbances with slowly varying frequencies is shown through simulation results.
文摘Oil and gas exploration and production activities (OGEPA) can produce surface disturbances created by the construction of roads, well pads, oil wells, pipelines, production facilities and storage pits. These alterations can range from landscape conversion to transformation depending on location, regulations and enforcement, environmental best practices and state vs. multinational management. Though not known as a major oil and gas state, Florida is ranked 23rd in gas and 24th in oil production nationally. Jay oilfield, located in West Florida’s panhandle region, is the largest and top producer in the state. Though production peaked in 1979, a nationwide upsurge is taking place that could affect Florida. The accounting from above approach proposed here is well suited to understand the role that the infrastructure surface footprint has on West Florida’s landscape and how to monitor potential changes underway. It involves remote sensing, GIS techniques and landscape ecology metrics to quantify surface disturbance in Santa Rosa County’s six oilfields and then ranks each field based on environmental performance (sustainability). Findings suggest that agricultural conversion is the leading driver of land-use and land-cover (LULC) change, while OGEPA have created small-scale surface alterations. This paper’s approach can help oil companies, land managers and local government authorities understand the spatial extent of OGEPA onshore alterations and plan future scenarios, particularly as drilling and production increase in the current shale revolution occurring throughout the US, as well as expanded drilling planned for Florida.
文摘Land cover change is a major challenge for many developing countries. Spatiotemporal information on this change is essential for monitoring global terrestrial ecosystem carbon, climate and biosphere exchange, and land use management. A combination of LST and the EVI indices in the global disturbance index (DI) has been proven to be useful for detecting and monitoring of changes in land covers at continental scales. However, this model has not been adequately applied or assessed in tropical regions. We aimed to demonstrate and evaluate the DI algorithm used to detect spatial change in land covers in Lao tropical forests. We used the land surface temperature and enhanced vegetation index of the Moderate Resolution Imaging Spectroradiometer time-series products from 2006-2012. We used two dates Google EarthTM images in 2006 and 2012 as ground truth data for accuracy assessment of the model. This research demonstrated that the DI was capable of detecting vegetation changes during seven-year periods with high overall accuracy;however, it showed low accuracy in detecting vegetation decrease.
文摘Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters. Simulation results show that performance tests in load change and coal quality change achieve better dynamic responses and larger scales of rejecting coal quality disturbances. The study provides an alternative to choose parameters for other control schemes of the ALSTOM gasifier.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金supported by a grant from the National Science Foundation(DEB-97-07551)
文摘Windthrow plays a critical role in maintaining species diversity in temperate forests. Do large-scale strong wind events(i.e., tropical cyclones, including hurricanes,typhoons and severe cyclonic storms) increase tree diversity in severely damaged forest areas? Do hurricanes(tropical cyclones that occurs in the Atlantic Ocean and northeastern Pacific Ocean) lead to altered relative abundance of shade-tolerant and shade-intolerant species? Did historic hurricanes alter the succession trajectory of the damaged forests? We used nearly 70-year tree demographic data to assess the effects of two major hurricanes on woody species diversity in Piedmont forests, North Carolina, USA. Species richness(S) and Shannon–Wiener's diversity index(H') were used to evaluate the changes in tree diversity. The changes in composition were assessed with Nonmetric Multidimensional Scaling. The pre-hurricane successional phase can strongly influence both the damage severity and subsequent responses. Although there is often an immediate drop in diversity following a hurricane, understory tree diversity quickly increases to levels that exceed those prior to the disturbance. This leads to an increase in diversity in stands that were substantially damaged. Hurricanes significantly decrease the dominance of shade-intolerant canopy species while increasing preestablished, more shade-tolerant species. We conclude that large, and infrequent hurricanes help to maintain local tree diversity, but also accelerate the increase in dominance of understory species such as red maple and beech.
文摘Instrumental and environmental disturbances do affect FG5 absolute gravimeter observations and the estimated gravity values, sometimes to the degree that entire measurement campaigns are discarded. We propose a method which moves towards the re-assessment of previously discarded observations. Once an estimate of the frequency and amplitude of a disturbance in a FG5 data set exists, the proposed method can estimate its impact on the estimated gravity value. This is performed through a Gaussian Bell Summation approach of the functional relationship between disturbance frequency and standard deviation of gravity. The filtering of the identified disturbance is realized through a modification of the functional model of the equation of motion in the least squares adjustment of FG5 observations. The results reveal that the Gaussian Bell Summation approximates the frequency—gravity impact relationship sufficiently well with negligible uncertainties, while the accuracy of the detected disturbance frequency defines a limiting factor for the gravity impact estimation. A realistic disturbance of 15 Hz with an amplitude of 1.5 nm had an impact of ≈48 [μGal] on the gravity estimate. The proposed filter approach reduced the impact to ≈12 [μGal], with the remaining effect being almost entirely associated to the uncertainty in disturbance frequency detection.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
文摘A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.
文摘This paper reviewed the literature on newer threedimensional imaging techniques and their applications in diagnosis and treatment planning of various dental anomalies. Developmental anomalies can occur during any of the developmental stages and are manifested clinically after the tooth is fully formed. These dental anomalies may involve a single tooth, a group of teeth, or the entire dentition. Two-dimensional diagnosticimaging, including periapical, occlusal, panoramic, or cephalometric radiographs are essential in localization and management of morphological and eruptive disorders. However, due to their inherent limitations such as insufficient precision because of unusual projection errors and lack of information about spatial relationships, these methods are considered unreliable. Thus, the use of newer image acquisition techniques that allow comprehensive three dimensional imaging and visualization of dental abnormalities is highly recommended for making a confirmatory diagnosis. The significance of accurate endodontic, surgical and orthodontic treatment planning in dental abnormalities cannot be overstated as it pertains to critical anatomic landmarks such as proximity to adjacent teeth or the mandibular canal. The precise information on spatial relationships provided by multiplanar imaging helps the dental surgeon to establish more accurate diagnosis, management strategies and also increases the patient safety. This review highlights the use of high-end diagnostic imaging modalities in diagnosis of the various morphologic and eruptive dental abnormalities.
文摘In this study, we examined the influence of changes in the degree and frequency of disturbance in estuarine tidal flats on the annual salt marsh plant communities (Suaeda maritima, Artemisia fukudo) in Mie Prefecture, Japan. Suaeda maritima and Artemisia fukudo communities occur in the branch river of the Kushida River. Although the areas occupied by these communities were very small in 2006, the Suaeda maritima community expanded significantly to 3609 m2 in 2008, and the Artemisia fukudo community expanded significantly to 2726 m2 in 2008 and 10,396 m2 in 2010. Before the onset of the investigation period in 2006, the overflow warning water level (3.5 m) and the flood fighting corps standby water level (3.0 m) each occurred on one day in August 2004 and October 2004, respectively;at those times, the water volume exceeded 1000 m3·s-1 and 1500 m3·s-1, respectively. We suggest that because much of the estuarine tidal flat erodes when the water volume exceeds 1000 m3·sǃ, the establishment of the Suaeda maritima and Artemisia fukudo communities is delayed until sufficient substrate is formed by the deposition of new sediment. In contrast, a water level of 2 - 3 m was observed on one day each in 2005, 2007 and 2009, with average water volumes of 488.5, 566.4 and 690.1 m3·s-1, respectively. We suggest that following the repeated disturbances caused by water levels of 1 - 3 m and flow volumes of 500 - 700 m3·s-1 over the bare ground exposed after flooding and erosion, Suaeda maritima is a pioneer species that colonizes on bare ground deposited by sediment transported from upstream and the sea during high tides, and following the same level of disturbance, Artemisia fukudo is secondary colonizer that has germinated and grown on the sediment deposited on the Suaeda maritima community.
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
文摘Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.
基金supported by the National Natural Science Foundation of China(Grant No.52271273)the Open Foundation of the Key Laboratory of Ministry of Education for Coastal Disaster and Protection(Grant No.Z202201)。
文摘Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands.The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth.Due to crab disturbance,nitrogen fuxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs.In summer,NH-N showed a positive flux from the sediment to the overlying water,but NO2-N and NOg-N showed positive fluxes from the sediment to the overlying water only in early stages.In winter,NH-N showed a positive flux from the sediment to the overlying water,but NO-N and NO,-N both exhibited positive and negative fluxes.These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.