Abstract:A space-filling polyhedron is a polyhedron which 'tile' space, analogous to the way of certain polygons tiled the plane. The cube is the unique space-filling platonic solid. If we make line connections the...Abstract:A space-filling polyhedron is a polyhedron which 'tile' space, analogous to the way of certain polygons tiled the plane. The cube is the unique space-filling platonic solid. If we make line connections the center with the vertices in the certain cube, the cube is divided into six pyramids. And if we glued six pyramids to the faces of the cube, we obtain a 'rhombic dodecahedron'. Since cubes are packing a space, rhombic dodecahedra are also space-filling polyhedra and a rhombic dodecahedron is divided into two regular tetrahcdra and one regular octahedron. In this study, we present how rhombic dodecahedron can be split into tetrahedra and octahedron. In this process, we can research a variety of divisions of regular polyhedron.展开更多
Multimetallic Pt-based alloys with excavated structures have attracted great interest owing to their compositional and morphological tunability, high specific surface areas, and impressive electro-catalytic activities...Multimetallic Pt-based alloys with excavated structures have attracted great interest owing to their compositional and morphological tunability, high specific surface areas, and impressive electro-catalytic activities. Herein, we report the first facile one-pot synthesis of trimetallic Pt-Ni-Cu highly excavated rhombic dodecahedrons (ERDs) with a yield approaching 100%. More importantly, these highly uniform nanocrystals have three-dimensionally accessible excavated surfaces, where abundant stepped atoms are observed. Benefiting from the highly excavated rhombic dodecahedral structures, electronic and synergistic effects within the trimetallic allo3~ and abundant stepped atoms, the as-prepared trimetallic Pt-Ni-Cu ERDs exhibit an enhanced electro-catalytic performance for the electro-oxidation of methanol compared to commercial Pt/C and bimetallic Pt-Cu ERDs and Pt-Ni-Cu solid rhombic dodecahedrons solid rhombic dodecahedrons (SRDs).展开更多
In this work,a three-dimensional nonlinear transient thermo-mechanically coupled finite element model(FEM)is established to investigate the variation in temperature and stress fields during electron beam melting(EBM)o...In this work,a three-dimensional nonlinear transient thermo-mechanically coupled finite element model(FEM)is established to investigate the variation in temperature and stress fields during electron beam melting(EBM)of rhombic dodecahedron Ti-6Al-4V alloy.The influence of the processing parameters on the temperature and residual stress evolutions was predicted and verified against existing literature data.The calculated results indicate that the interlayer cooling time has very little effect on both the temperature and stress evolutions,indicating that the interlayer cooling time can be set up as short as possible to reduce manufacturing time.It is presented that the residual stress of the intersection is higher than that of non-intersection.With increasing preheating temperature,the residual stress decreases continuously,which is about 20%–30%for every 50℃rise in temperature.The temperature and stress fields repeated every four layers with the complex periodic scanning strategy.Both x and y-component residual stresses are tensile stresses,while z-component stress is weak compressive or tensile stress in typical paths.It is proposed that the interlayer cooling is necessary to obtain a rhombic dodecahedron with low residual stress.These results can bring insights into the understanding of the residual stress during EBM.展开更多
以六次甲基四胺(HMTA)和聚乙烯吡咯烷酮(PVP)为混合辅助剂,采用沉淀法合成了立方晶相棱形十二面体Ag3PO4微晶,对其进行了表征,并通过降解罗丹明B考察了其可见光催化活性。实验结果表明:以0.10g(25 g/mol(以Ag NO3计))HMTA和0.10 g PVP...以六次甲基四胺(HMTA)和聚乙烯吡咯烷酮(PVP)为混合辅助剂,采用沉淀法合成了立方晶相棱形十二面体Ag3PO4微晶,对其进行了表征,并通过降解罗丹明B考察了其可见光催化活性。实验结果表明:以0.10g(25 g/mol(以Ag NO3计))HMTA和0.10 g PVP为混合辅助剂合成的棱形十二面体Ag3PO4微晶,其禁带宽度为2.17e V,对罗丹明B有较好的可见光催化活性;在8 mg/L罗丹明B溶液中加入0.4 g/L Ag3PO4,可见光照射12 min时,未添加辅助剂以及分别添加0.10 g PVP、0.10 g HMTA、0.10 g HMTA和0.10 g PVP混合辅助剂制备的Ag3PO4对罗丹明B的降解率分别为67.59%,76.25%,91.88%,99.64%;棱形十二面体Ag3PO4微晶重复使用4次后,罗丹明B的降解率仍达91.59%,说明该光催化剂具有较好的重复使用性能。展开更多
Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated i...Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.展开更多
文摘Abstract:A space-filling polyhedron is a polyhedron which 'tile' space, analogous to the way of certain polygons tiled the plane. The cube is the unique space-filling platonic solid. If we make line connections the center with the vertices in the certain cube, the cube is divided into six pyramids. And if we glued six pyramids to the faces of the cube, we obtain a 'rhombic dodecahedron'. Since cubes are packing a space, rhombic dodecahedra are also space-filling polyhedra and a rhombic dodecahedron is divided into two regular tetrahcdra and one regular octahedron. In this study, we present how rhombic dodecahedron can be split into tetrahedra and octahedron. In this process, we can research a variety of divisions of regular polyhedron.
文摘Multimetallic Pt-based alloys with excavated structures have attracted great interest owing to their compositional and morphological tunability, high specific surface areas, and impressive electro-catalytic activities. Herein, we report the first facile one-pot synthesis of trimetallic Pt-Ni-Cu highly excavated rhombic dodecahedrons (ERDs) with a yield approaching 100%. More importantly, these highly uniform nanocrystals have three-dimensionally accessible excavated surfaces, where abundant stepped atoms are observed. Benefiting from the highly excavated rhombic dodecahedral structures, electronic and synergistic effects within the trimetallic allo3~ and abundant stepped atoms, the as-prepared trimetallic Pt-Ni-Cu ERDs exhibit an enhanced electro-catalytic performance for the electro-oxidation of methanol compared to commercial Pt/C and bimetallic Pt-Cu ERDs and Pt-Ni-Cu solid rhombic dodecahedrons solid rhombic dodecahedrons (SRDs).
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2019MEM012).
文摘In this work,a three-dimensional nonlinear transient thermo-mechanically coupled finite element model(FEM)is established to investigate the variation in temperature and stress fields during electron beam melting(EBM)of rhombic dodecahedron Ti-6Al-4V alloy.The influence of the processing parameters on the temperature and residual stress evolutions was predicted and verified against existing literature data.The calculated results indicate that the interlayer cooling time has very little effect on both the temperature and stress evolutions,indicating that the interlayer cooling time can be set up as short as possible to reduce manufacturing time.It is presented that the residual stress of the intersection is higher than that of non-intersection.With increasing preheating temperature,the residual stress decreases continuously,which is about 20%–30%for every 50℃rise in temperature.The temperature and stress fields repeated every four layers with the complex periodic scanning strategy.Both x and y-component residual stresses are tensile stresses,while z-component stress is weak compressive or tensile stress in typical paths.It is proposed that the interlayer cooling is necessary to obtain a rhombic dodecahedron with low residual stress.These results can bring insights into the understanding of the residual stress during EBM.
文摘以六次甲基四胺(HMTA)和聚乙烯吡咯烷酮(PVP)为混合辅助剂,采用沉淀法合成了立方晶相棱形十二面体Ag3PO4微晶,对其进行了表征,并通过降解罗丹明B考察了其可见光催化活性。实验结果表明:以0.10g(25 g/mol(以Ag NO3计))HMTA和0.10 g PVP为混合辅助剂合成的棱形十二面体Ag3PO4微晶,其禁带宽度为2.17e V,对罗丹明B有较好的可见光催化活性;在8 mg/L罗丹明B溶液中加入0.4 g/L Ag3PO4,可见光照射12 min时,未添加辅助剂以及分别添加0.10 g PVP、0.10 g HMTA、0.10 g HMTA和0.10 g PVP混合辅助剂制备的Ag3PO4对罗丹明B的降解率分别为67.59%,76.25%,91.88%,99.64%;棱形十二面体Ag3PO4微晶重复使用4次后,罗丹明B的降解率仍达91.59%,说明该光催化剂具有较好的重复使用性能。
基金financially supported by Beijing Natural Science Foundation(No.2192034)China Postdoctoral Science Foundation(No.2018M631335)National Key R&D Program of China(No.2018YFB0905600).
文摘Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.