期刊文献+
共找到3,447篇文章
< 1 2 173 >
每页显示 20 50 100
Hybrid Detection and Tracking of Fast-Flux Botnet on Domain Name System Traffic 被引量:2
1
作者 邹福泰 章思宇 饶卫雄 《China Communications》 SCIE CSCD 2013年第11期81-94,共14页
Fast-flux is a Domain Name System(DNS)technique used by botnets to organise compromised hosts into a high-availability,loadbalancing network that is similar to Content Delivery Networks(CDNs).Fast-Flux Service Network... Fast-flux is a Domain Name System(DNS)technique used by botnets to organise compromised hosts into a high-availability,loadbalancing network that is similar to Content Delivery Networks(CDNs).Fast-Flux Service Networks(FFSNs)are usually used as proxies of phishing websites and malwares,and hide upstream servers that host actual content.In this paper,by analysing recursive DNS traffic,we develop a fast-flux domain detection method which combines both real-time detection and long-term monitoring.Experimental results demonstrate that our solution can achieve significantly higher detection accuracy values than previous flux-score based algorithms,and is light-weight in terms of resource consumption.We evaluate the performance of the proposed fast-flux detection and tracking solution during a 180-day period of deployment on our university’s DNS servers.Based on the tracking results,we successfully identify the changes in the distribution of FFSN and their roles in recent Internet attacks. 展开更多
关键词 domain name system BOTNET fast-flux
下载PDF
Estimation-free spatial-domain image reconstruction of structured illumination microscopy 被引量:1
2
作者 Xiaoyan Li Shijie Tu +4 位作者 Yile Sun Yubing Han Xiang Hao Cuifang kuang Xu Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期45-58,共14页
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona... Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise. 展开更多
关键词 Structured illumination microscopy image reconstruction spatial domain digital micromirror device(DMD)
下载PDF
Delineating homogeneous domains of fractured rocks using topological manifolds and deep learning
3
作者 Yongqiang Liu Jianping Chen +3 位作者 Fujun Zhou Jiewei Zhan Wanglai Xu Jianhua Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2996-3013,共18页
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa... Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements. 展开更多
关键词 Homogeneous domain Geological domain Geotechnical domain Structural domain Topological manifold Deep learning
下载PDF
User Station Security Protection Method Based on Random Domain Name Detection and Active Defense
4
作者 Hongyan Yin Xiaokang Ren +2 位作者 Jinyu Liu Shuo Zhang Wenkun Liu 《Journal of Information Security》 2023年第1期39-51,共13页
The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an import... The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an important target of network attacks. In order to perceive the network attack events on the user station side in time, a method combining real-time detection and active defense of random domain names on the user station side was proposed. Capsule network (CapsNet) combined with long short-term memory network (LSTM) was used to classify the domain names extracted from the traffic data. When a random domain name is detected, it sent instructions to routers and switched to update their security policies through the remote terminal protocol (Telnet), or shut down the service interfaces of routers and switched to block network attacks. The experimental results showed that the use of CapsNet combined with LSTM classification algorithm can achieve 99.16% accuracy and 98% recall rate in random domain name detection. Through the Telnet protocol, routers and switches can be linked to make active defense without interrupting services. 展开更多
关键词 User Station Random domain name Detection Capsule Network Active Defense Long Short Term Memory
下载PDF
Tomato detection method using domain adaptive learning for dense planting environments
5
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
Mapping the antiparallel aligned domain rotation by microwave excitation
6
作者 Jing Zhang Yuanzhi Cui +11 位作者 Xiaoyu Wang Chuang Wang Mengchen Liu Jie Xu Kai Li Yunhe Zhao Zhenyan Lu Lining Pan Chendong Jin Qingfang Liu Jianbo Wang Derang Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期599-605,共7页
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ... The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation. 展开更多
关键词 stripe domain magnetic film microwave excitation micromagnetic simulation
下载PDF
MINIMIZERS OF L^(2)-SUBCRITICAL VARIATIONAL PROBLEMS WITH SPATIALLY DECAYING NONLINEARITIES IN BOUNDED DOMAINS
7
作者 陈彬 高永帅 +1 位作者 郭玉劲 吴越 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期984-996,共13页
This paper is concerned with the minimizers of L^(2)-subcritical constraint variar tional problems with spatially decaying nonlinearities in a bounded domain Ω of R~N(N≥1).We prove that the problem admits minimizers... This paper is concerned with the minimizers of L^(2)-subcritical constraint variar tional problems with spatially decaying nonlinearities in a bounded domain Ω of R~N(N≥1).We prove that the problem admits minimizers for any M> 0.Moreover,the limiting behavior of minimizers as M→∞ is also analyzed rigorously. 展开更多
关键词 decaying nonlinearity L~2-subcritical MINIMIZERS bounded domains mass concentration
下载PDF
A Time-Domain Numerical Simulation for Free Motion Responses of Two Ships Advancing in Head Waves
8
作者 PAN Su-yong CHENG Yong 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期519-530,共12页
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit... The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response. 展开更多
关键词 ship motions time domain simulation forward speed different distances wave loads
下载PDF
Low-Rank Optimal Transport for Robust Domain Adaptation
9
作者 Bingrong Xu Jianhua Yin +2 位作者 Cheng Lian Yixin Su Zhigang Zeng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1667-1680,共14页
When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada... When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets. 展开更多
关键词 domain adaptation low-rank constraint noise corruption optimal transport
下载PDF
BIG HANKEL OPERATORS ON HARDY SPACES OF STRONGLY PSEUDOCONVEX DOMAINS
10
作者 陈伯勇 江良英 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期789-809,共21页
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a... In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains. 展开更多
关键词 Hankel operator Hardy space Bergman space pseudoconvex domain
下载PDF
ON THE SOBOLEV DOLBEAULT COHOMOLOGY OF A DOMAIN WITH PSEUDOCONCAVE BOUNDARIES
11
作者 陈健 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期431-444,共14页
In this note,we mainly make use of a method devised by Shaw[15]for studying Sobolev Dolbeault cohomologies of a pseudoconcave domain of the type Ω=Ω\∪_(j=1^(m))Ω_(j),where Ω and {Ω_(j)}_(j=1^(m)■Ω are bounded ... In this note,we mainly make use of a method devised by Shaw[15]for studying Sobolev Dolbeault cohomologies of a pseudoconcave domain of the type Ω=Ω\∪_(j=1^(m))Ω_(j),where Ω and {Ω_(j)}_(j=1^(m)■Ω are bounded pseudoconvex domains in ℂ^(n) with smooth boundaries,and Ω_(1),…,Ω_(m) are mutually disjoint.The main results can also be quickly obtained by virtue of[5]. 展开更多
关键词 Cauchy-Riemann equations pseudoconcave domains δ-Neumann operator Bergman spaces
下载PDF
Rapid health estimation of in-service battery packs based on limited labels and domain adaptation
12
作者 Zhongwei Deng Le Xu +3 位作者 Hongao Liu Xiaosong Hu Bing Wang Jingjing Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期345-354,I0009,共11页
For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing m... For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing methods often rely on lengthy battery charging/discharging data or extensive training samples,which hinders their implementation in practical scenarios.To address this issue,a rapid health estimation method based on short-time charging data and limited labels for in-service battery packs is proposed in this paper.First,a digital twin of battery pack is established to emulate its dynamic behavior across various aging levels and inconsistency degrees.Then,increment capacity sequences(△Q)within a short voltage span are extracted from charging process to indicate battery health.Furthermore,data-driven models based on deep convolutional neural network(DCNN)are constructed to estimate battery state of health(SOH),where the synthetic data is employed to pre-train the models,and transfer learning strategies by using fine-tuning and domain adaptation are utilized to enhance the model adaptability.Finally,field data of 10 EVs exhibiting different SOHs are used to verify the proposed methods.By using the△Q with 100 m V voltage change,the SOH of battery packs can be accurately estimated with an error around 3.2%. 展开更多
关键词 Lithium-ion battery Electric vehicles Health estimation Feature extraction Convolutional neural network domain adapatation
下载PDF
Consistency between domain wall oscillation modes and spin wave modes in nanostrips
13
作者 董新伟 吴振江 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期511-516,共6页
Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the freq... Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs. 展开更多
关键词 micromagnetic simulation domain wall spin wave
下载PDF
Diabetic retinopathy identification based on multi-sourcefree domain adaptation
14
作者 Guang-Hua Zhang Guang-Ping Zhuo +3 位作者 Zhao-Xia Zhang Bin Sun Wei-Hua Yang Shao-Chong Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1193-1204,共12页
AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to devel... AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients. 展开更多
关键词 diabetic retinopathy multisource-free domain adaptation pseudo-label generation softmaxconsistence minimization
下载PDF
Spatial correlations in time and frequency domains between chlorophyll-a concentration and environmental factors in the Bohai Sea
15
作者 Wan XU Di MU +1 位作者 Zhenteng YANG Dekui YUAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1143-1156,共14页
Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol o... Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth. 展开更多
关键词 chlorophyll a(Chl a) frequency domain spatial correlation Bohai Sea
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
16
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
17
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Multiple Matching Attenuation Based on Curvelet Domain Extended Filtering
18
作者 HUA Qingfeng CHEN Zhang +6 位作者 HE Huili TAN Jun CHEN Haifeng LI Guanbao SONG Peng ZHAO Bo JIANG Xiuping 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期924-932,共9页
The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet doma... The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method. 展开更多
关键词 multiple matching attenuation curvelet domain extended filtering
下载PDF
Magnetic domain structures in ultrathin Bi_(2)Te_(3)/CrTe_(2) heterostructures
19
作者 夏体瑞 杨笑天 +6 位作者 张逸凡 刘馨琪 蔡新雨 刘畅 姚岐 寇煦丰 王文波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期511-517,共7页
Chromium tellurium compounds are important two-dimensional van der Waals ferromagnetic materials with high Curie temperature and chemical stability in air,which is promising for applications in spintronic devices.Here... Chromium tellurium compounds are important two-dimensional van der Waals ferromagnetic materials with high Curie temperature and chemical stability in air,which is promising for applications in spintronic devices.Here,highquality spin-orbital-torque(SOT)device,Bi_(2)Te_(3)/CrTe_(2)heterostructure was epitaxially grown on Al_(2)O_(3)(0001)substrates.Anomalous Hall measurements indicate the existence of strong ferromagnetism in this device with the CrTe_(2)thickness down to 10 nm.In order to investigate its micromagnetic structure,cryogenic magnetic force microscope(MFM)was utilized to measure the magnetic domain evolutions at various temperatures and magnetic fields.The virgin domain state of the device shows a worm-like magnetic domain structure with the size around 0.6μm-0.8μm.Larger irregular-shape magnetic domains(>1μm)can be induced and pinned,after the field is increased to coercive field and ramped back to low fields.The temperature-dependent MFM signals exhibit a nice mean-field-like ferromagnetic transition with Curie temperature around 201.5 K,indicating a robust ferromagnetic ordering.Such a device can be potentially implemented in future magnetic memory technology. 展开更多
关键词 CrTe_(2) magnetic domain magnetic force microscopy
下载PDF
Enhancing Relational Triple Extraction in Specific Domains:Semantic Enhancement and Synergy of Large Language Models and Small Pre-Trained Language Models
20
作者 Jiakai Li Jianpeng Hu Geng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2481-2503,共23页
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e... In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach. 展开更多
关键词 Relational triple extraction semantic interaction large language models data augmentation specific domains
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部