期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of Double-Front Detonation of Suspended Mixed Cyclotrimethylenetrinitramine and Aluminum Dust in Air 被引量:1
1
作者 昝文涛 董贺飞 洪滔 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第7期130-133,共4页
The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are ob... The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are obtained. The double-front detonation and steady state of detonation wave of the mixed dust are analyzed. For the dust mixed RDX with density of 0.565kg/m3 and radius of 10μm as well as aluminum with density of 0.145kg/m3 and radius of 4μm, the detonation wave will reach a steady state at 23m. The effects of the size of aluminum on the detonation are analyzed. For constant radius of RDX particles with radius of 10μm, as the radius of aluminum particles is larger than 2.0 μm, the double-front detonation can be observed due to the different ignition distances and reaction rates of RDX and aluminum particles. As the radius of aluminum particles is larger, the velocity, pressure and temperature of detonation wave will be slower. The pressure at the Chapman-Jouguet (CJ) point also becomes lower. Comparing the detonation with single RDX dust, the pressure and temperature in the flow field of detonation of mixed dust are higher. 展开更多
关键词 RDX Simulation of double-front Detonation of Suspended Mixed Cyclotrimethylenetrinitramine and Aluminum Dust in Air
下载PDF
The Thermodynamic and Dynamical Features of Double Front Structures During 21-31 July 1998 in China 被引量:7
2
作者 周玉淑 邓国 +1 位作者 雷霆 琚建华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第6期924-935,共12页
The daily 1°× 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-p... The daily 1°× 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-point front near the periphery of the western Pacific subtropical high (WPSH). The results clearly demonstrate the existence of the dew-point front, and its thermodynamic and dynamic structural characteristics are analyzed in detail. The dew-point front is a transitional belt between the moist southwest monsoon flow and the dry adiabatic sinking flow near the WPSH, manifested by a large horizontal moisture gradient in the mid-lower troposphere and conjugated with the mei-yu front to form a predominant double-front structure associated with intense rainfall in the mei-yu period. The mei-yu front is located between 30° and 35°N, vertically extends from the ground level to the upper level and shifts northward. The dew-point front is to the south of the mei-yu front and lies up against the periphery of the WPSH. Generally, it is located between 850 hPa and 500 hPa. On the dew-point front side, the southwesterly prevails at the lower level and the northeasterly at the upper level; this wind distribution is different from that on the mei-yu front side. Vertical ascending motion exists between the two fronts, and there are descending motions on the north side of the mei^yu front and on the south side of the dew-point front~ which form a secondary circulation. The dynamics of the double fronts also have some interesting features. At the lower level, positive vertical vorticity and obvious convergence between the two fronts are clearly identified. At the mid-lower level, negative local change of the divergence (corresponding to increasing convergence) is often embedded in the two fronts or against the mei-yu front. Most cloud clusters occur between the two fronts and propagate down stream in a wave-like manner. 展开更多
关键词 double-front structure mei-yu front system structural features
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部