BACKGROUND Frailty has become a significant public health issue.The recent increase in the number of frail older adults has led to increased attention being paid to psycho-logical care services in communities.The soci...BACKGROUND Frailty has become a significant public health issue.The recent increase in the number of frail older adults has led to increased attention being paid to psycho-logical care services in communities.The social isolation of pre-frail older adults can impact their psychological distress.AIM To explore the mediating effect of health literacy between social isolation and psychological distress among communitydwelling older adults with pre-frailty.METHODS This descriptive cross-sectional study was conducted with 254 pre-frail older individuals aged 60 years and over.Social isolation,health literacy,and psycholo-gical distress were comprehensively measured using the Lubben Social Network Scale-6,12-item Short-Form Health Literacy Questionnaire,and the Kessler Psy-chological Distress Scale-10.Data were evaluated using the SPSS 27.0 package program and the PROCESS macro tool.Descriptive statistical analyses,correlation analyses,and bootstrap mediation tests were used to assess associations between the variables.RESULTS The results showed that social isolation had an effect on health literacy among pre-frail older adults(β=0.240,P<0.001),social isolation impact on psycho-logical distress pre-frail older adults(β=-0.415,P<0.001);health literacy was identified effect on psychological distress among pre-frail older persons(β=-0.307,P<0.001).Health literacy partially mediated the relationship between social isolation and psychological distress among community-dwelling older adults with pre-frailty,with a mediation effect of-0.074,accounting for 17.83%of the total effect.展开更多
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s...To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.展开更多
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of...Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes.展开更多
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored...Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.展开更多
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co...Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.展开更多
The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petrolife...The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016).展开更多
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t...Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
In group-living animals,chronic juvenile social isolation stress(SIS)can profoundly affect behavior and neuroendocrine regulation.However,its impact on social behavior in avian species,particularly regarding sexspecif...In group-living animals,chronic juvenile social isolation stress(SIS)can profoundly affect behavior and neuroendocrine regulation.However,its impact on social behavior in avian species,particularly regarding sexspecific neural circuit differences,remains underexplored.This study focused on zebra finches,a species known for its social clustering and cognitive abilities,to elucidate these influences.Results indicated that SIS significantly increased plasma corticosterone levels in females but not in males,suggesting a heightened stress response and susceptibility in females.Additionally,SIS disrupted sociality and flocking behavior in both sexes,with more severe impairments in social recognition observed in females.Mesotocin(MT)levels in the lateral septum of both sexes and in the ventromedial hypothalamus of females were found to mediate the SIS effect,while vasotocin(VT)levels within the social behavior network remained unchanged.Pharmacological interventions confirmed the critical role of MT in reversing SIS-induced impairments in sociality,flocking behavior,and social recognition,particularly in females.These findings highlight unique nucleus-and sex-dependent variations in MT and VT regulation,providing novel insights into the mechanisms governing avian social behavior.This study advances our understanding of the independent evolutionary pathways of neural circuits and neuroendocrine systems that modulate social behaviors across different taxonomic groups.展开更多
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc...Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.展开更多
Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF...Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF isolation are time-consuming and expensive.Thus,in this study,we explored a new method of SVF extrac-tion-ultrasound-assisted SVF isolation(USASI)-and compared the viability and characteristics of SVF isolated using different methods.Methods:SVF extraction methods using different combinations of ultrasound power,ultrasound time,collagenase dosage,and collagenase digestion time were compared with those of the control group(collagenase digestion method).The cell yield and vitality of the SVF were evaluated via cell counting and trypan blue staining.The cell components and immunophenotypes of freshly isolated SVF were analyzed using flow cytometry.The prolifer-ative capacity and differentiation potential of the SVF were also identified.Results:Ultrasonication at 95 W-20 kHz for 30 s followed by digestion with 0.15%collagenase for 30 min was identified as the most suitable parameter for the USASI method in isolating SVF,as recommended based on the evaluation of various tested conditions.The USASI method significantly reduced the collagenase dosage and shortened the digestion time.Compared to the collagenase digestion method,the USASI method had a higher cell yield and cell viability,with no adverse effects on cell components,proliferative capacity,or multipotential differentiation capacity.Conclusion:With reduced processing time,lower collagenase dosage,and increased cell yield without impairing the viability and characteristics of SVF,USASI holds the potential to emerge as a time-saving and cost-effective method for future clinical applications.展开更多
The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs...The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.展开更多
[Objective]The paper was to identify,isolate,and characterize porcine astrovirus in Shandong Province between 2021 and 2023.[Method]A total of 1025 samples of porcine diarrhea samples were collected from various regio...[Objective]The paper was to identify,isolate,and characterize porcine astrovirus in Shandong Province between 2021 and 2023.[Method]A total of 1025 samples of porcine diarrhea samples were collected from various regions of Shandong Province between January 2021 and October 2023.The samples were tested by RT-PCR,followed by sequencing and phylogenetic analyses of the polymerase.[Result]The total positive rate of PAstV was 34.6%(355/1025).The respective proportions of individuals infected with PAstV-1,PAstV-2,PAstV-4 and PAstV-5 were 25.4%(90/355),28.2%(100/355),35.2%(125/355)and 22.5%(80/355),respectively.Additionally,mixed infection was observed.Meanwhile,849 samples of healthy pigs were tested by RT-PCR,and the results demonstrated that the total positive rate of PAstV was 8.13%(69/849).Of these,the proportion of PAstV-1,PAstV-2 and PAstV-4 infection was 27.5%(19/69),37.7%(26/69)and 40.6%(28/69),and a mixed infection also existed.Further sequencing and characterization of some the selected isolates revealed low sequence identities(56.2%)with known PAstV strains,indicating the presence of novel types or genotypes of PAstVs.Furthermore,the isolation conditions of porcine astrovirus were optimized,resulting in the purification of a pure PAstV-4 strain(designated PAstV-4-GRF1).The virus was found to exhibit typical astroviral morphology,with nucleotide identity ranging from 89.9 to 95.4%with previously published PAstV-4 strains.Then,macrovirus transcriptome sequencing showed that 88.30%of the CRF1 samples were mammalian astroviruses.By species classification,PAstV 4 and PAstV 2 accounted for 21.79%and 0.32%,respectively.Phylogenetic tree analysis showed that the c15050 fragment was identical to the GRF-1 sequencing fragment of the isolated strain,and exhibited the highest homology with the Hunan PAstV-4 sequence MK460231 in China.[Conclusion]As the inaugural isolated PAstV-4 strain,it furnishes pivotal materialfor the investigation ofthe biological and pathogenic properties of this virus as well as for the prospectivedevelopment of relevant biological and diagnostic reagents.展开更多
This article highlights the importance of optimizing the techniques used for isolating stromal vascular fraction cells from adipose tissue.Furthermore,by presenting key findings from the literature,it clarifies the ef...This article highlights the importance of optimizing the techniques used for isolating stromal vascular fraction cells from adipose tissue.Furthermore,by presenting key findings from the literature,it clarifies the effects of refined techniques on regenerative medicine and advocates for ongoing research and innovation to enhance therapeutic outcomes.展开更多
Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol...Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.展开更多
Carotenoids are a group of natural pigments that are isolated from plants and are known for their great importance in maintaining human health. Beta-carotene is an organic compound, from yellow to red-orange colour, w...Carotenoids are a group of natural pigments that are isolated from plants and are known for their great importance in maintaining human health. Beta-carotene is an organic compound, from yellow to red-orange colour, which is found in many plants, fruits and vegetables. All carotenoids, especially beta-carotene, which is the subject of this research, are used in the pharmaceutical, food and cosmetic industries. It is also important in medicine as it prevents the occurrence of many diseases. Beta-carotene is a precursor of vitamin A and is used in various research due to its strong antioxidant effect. The highest amount of beta-carotene is found in carrots, followed by apricots, tomatoes, asparagus, broccoli, pumpkins, plums, etc. This plant pigment was isolated from carrots using a reflux extraction method using the organic solvents methanol and methylene chloride. The isolated carotenoid was confirmed by UV, TLC, FTIR, and HPLC methods. The absorption maxima of the UV spectrum of the isolated compound (β-carotene) range from 200 to 280 nm and 400 to 500 nm. The identification of beta-carotene was done by analysis using the FTIR method, where functional groups that are present indicate the isolated compound. HPLC method is rapid, effective and sensitive for carotenoid analysis. Analysis of the HPLC method confirms the isolated compound with an absorption maximum of 448 nm, which was compared with the standard.展开更多
BACKGROUND Emergency pancreaticoduodenectomy(EPD)is a rare event for complex periam-pullary etiology.Increased intraoperative blood loss is correlated with poor post-operative outcomes.CASE SUMMARY Two patients underw...BACKGROUND Emergency pancreaticoduodenectomy(EPD)is a rare event for complex periam-pullary etiology.Increased intraoperative blood loss is correlated with poor post-operative outcomes.CASE SUMMARY Two patients underwent EPD using a no-touch isolation technique,in which all arteries supplying the pancreatic head region were ligated and divided before manipulation of the pancreatic head and duodenum.The operative times were 220 and 239 min,and the blood loss was 70 and 270 g,respectively.The patients were discharged on the 14^(th) and 10^(th) postoperative day,respectively.Thirty-two patients underwent EPD for the treatment of neoplastic bleeding.The mean operative time was 361.6 min,and the mean blood loss was 747.3 g.The comp-lication rate was 37.5%.The in-hospital mortality rate was 9.38%.CONCLUSION The no-touch isolation technique is feasible,safe,and effective for reducing intraoperative blood loss in EPD.展开更多
This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The...This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The objective of this research was to determine the effects of factors that impact the isolation process and to identify the optimal conditions for CNC isolation by using the response surface methodology. The factors that varied during the process were the quantity of MCC, the concentration of sulfuric acid, the hydrolysis time and temperature, and the ultrasonic treatment time. The response measured was the yield. The study found that with 5.80 g of microcrystalline cellulose, a sulfuric acid concentration of 63.50% (w/w), a hydrolysis time of 53 minutes, a hydrolysis temperature of 69˚C, and a sonication time of 19 minutes are the ideal conditions for isolation. The experimental yield achieved was (37.84 ± 0.99) %. The main factors influencing the process were the sulfuric acid concentration, hydrolysis time and temperature, with a significant influence (p < 0.05). Infrared characterization results showed that nanocrystals were indeed isolated. With a crystallinity of 35.23 and 79.74, respectively, for Ayous wood fiber and nanocrystalline cellulose were observed by X-ray diffraction, with the formation of type II cellulose, thermodynamically more stable than native cellulose type I.展开更多
基金Supported by the Scientific Research Fund of Zhejiang Provincial Education Department,No.Y202351104and Huzhou Science and Technology Plan Project,No.2023GZ67。
文摘BACKGROUND Frailty has become a significant public health issue.The recent increase in the number of frail older adults has led to increased attention being paid to psycho-logical care services in communities.The social isolation of pre-frail older adults can impact their psychological distress.AIM To explore the mediating effect of health literacy between social isolation and psychological distress among communitydwelling older adults with pre-frailty.METHODS This descriptive cross-sectional study was conducted with 254 pre-frail older individuals aged 60 years and over.Social isolation,health literacy,and psycholo-gical distress were comprehensively measured using the Lubben Social Network Scale-6,12-item Short-Form Health Literacy Questionnaire,and the Kessler Psy-chological Distress Scale-10.Data were evaluated using the SPSS 27.0 package program and the PROCESS macro tool.Descriptive statistical analyses,correlation analyses,and bootstrap mediation tests were used to assess associations between the variables.RESULTS The results showed that social isolation had an effect on health literacy among pre-frail older adults(β=0.240,P<0.001),social isolation impact on psycho-logical distress pre-frail older adults(β=-0.415,P<0.001);health literacy was identified effect on psychological distress among pre-frail older persons(β=-0.307,P<0.001).Health literacy partially mediated the relationship between social isolation and psychological distress among community-dwelling older adults with pre-frailty,with a mediation effect of-0.074,accounting for 17.83%of the total effect.
基金National Natural Science Foundation of China under Grant No.52278534Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金supported by the National Natural Science Foundation of China(Nos.12272210,11872037,11872159)the Innovation Program of Shanghai Municipal Education Commission of China(No.2017-01-07-00-09-E00019)。
文摘Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes.
基金supported by the National Natural Science Foundation of China[grant number 51991393]support from the Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology and Key Laboratory of Earthquake Resistance,Earthquake Mitigation,and Structural Safety funded by the Ministry of Education。
文摘Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.
基金Fund by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No.2018YFD1101002-03)。
文摘Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.
基金supports from the International Continental Scientific Drilling Programfunded by the National Natural Science Foundation of China(Grant Nos.41790453,41472304,42102129,42102135 and 41972313)+2 种基金Natural Science Foundation of Jilin Province(Grant No.20170101001JC)the National Key Research&Development Program of China(Grant No.2019YFC0605402)China Geological Survey(Grant No.DD20189702)。
文摘The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016).
基金Project supported by Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515010967 and 2023A1515012821)the National Natural Science Foundation of China(Grant Nos.12002272 and 12272293)Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province(Grant No.SZDKF-202101)。
文摘Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金supported by the National Natural Science Foundation of China (31971413) to D.L.Hebei Natural Science Foundation (C2023205016)Foundation of Hebei Normal University(L2020B21) to L.W。
文摘In group-living animals,chronic juvenile social isolation stress(SIS)can profoundly affect behavior and neuroendocrine regulation.However,its impact on social behavior in avian species,particularly regarding sexspecific neural circuit differences,remains underexplored.This study focused on zebra finches,a species known for its social clustering and cognitive abilities,to elucidate these influences.Results indicated that SIS significantly increased plasma corticosterone levels in females but not in males,suggesting a heightened stress response and susceptibility in females.Additionally,SIS disrupted sociality and flocking behavior in both sexes,with more severe impairments in social recognition observed in females.Mesotocin(MT)levels in the lateral septum of both sexes and in the ventromedial hypothalamus of females were found to mediate the SIS effect,while vasotocin(VT)levels within the social behavior network remained unchanged.Pharmacological interventions confirmed the critical role of MT in reversing SIS-induced impairments in sociality,flocking behavior,and social recognition,particularly in females.These findings highlight unique nucleus-and sex-dependent variations in MT and VT regulation,providing novel insights into the mechanisms governing avian social behavior.This study advances our understanding of the independent evolutionary pathways of neural circuits and neuroendocrine systems that modulate social behaviors across different taxonomic groups.
文摘Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.
基金supported by the National Natural Science Foundation of China(grant nos.81971848 and 82272287)Shanghai Municipal Key Clinical Specialty(grant no,shslczdzk00901)+2 种基金Clinical Research Plan of SHDC(rant nos.SHDC2020CR1019B and SHC2020CR402)Innovative Research Team of High-Level Local Universities in Shanghai(grant no.SSMU-ZDCX20180700)Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by the Science and Technology Commission of Shanghai Municipality(grant no.22MC1940300).
文摘Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF isolation are time-consuming and expensive.Thus,in this study,we explored a new method of SVF extrac-tion-ultrasound-assisted SVF isolation(USASI)-and compared the viability and characteristics of SVF isolated using different methods.Methods:SVF extraction methods using different combinations of ultrasound power,ultrasound time,collagenase dosage,and collagenase digestion time were compared with those of the control group(collagenase digestion method).The cell yield and vitality of the SVF were evaluated via cell counting and trypan blue staining.The cell components and immunophenotypes of freshly isolated SVF were analyzed using flow cytometry.The prolifer-ative capacity and differentiation potential of the SVF were also identified.Results:Ultrasonication at 95 W-20 kHz for 30 s followed by digestion with 0.15%collagenase for 30 min was identified as the most suitable parameter for the USASI method in isolating SVF,as recommended based on the evaluation of various tested conditions.The USASI method significantly reduced the collagenase dosage and shortened the digestion time.Compared to the collagenase digestion method,the USASI method had a higher cell yield and cell viability,with no adverse effects on cell components,proliferative capacity,or multipotential differentiation capacity.Conclusion:With reduced processing time,lower collagenase dosage,and increased cell yield without impairing the viability and characteristics of SVF,USASI holds the potential to emerge as a time-saving and cost-effective method for future clinical applications.
基金partially supported by the Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (No. I01211200001)LDS 2023 Educational Foundation of The University of Nottingham Ningbo China (No. E06221200002)
文摘The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.
基金Supported by Sub-project of the National Key Research and Development Program(2023YFD1800804-06)National Natural Science Funds of China(32302918 and 32302919)+2 种基金Innovation Capacity Improvement Project for Technology-based SMEs in Shandong Province(2023TSGC0006)Science and Technology Cooperation Project of Shandong and Chongqing(2022LYXZ030)Shandong Province Key R&D Program Rural Revitalization Project(2023TZXD083)。
文摘[Objective]The paper was to identify,isolate,and characterize porcine astrovirus in Shandong Province between 2021 and 2023.[Method]A total of 1025 samples of porcine diarrhea samples were collected from various regions of Shandong Province between January 2021 and October 2023.The samples were tested by RT-PCR,followed by sequencing and phylogenetic analyses of the polymerase.[Result]The total positive rate of PAstV was 34.6%(355/1025).The respective proportions of individuals infected with PAstV-1,PAstV-2,PAstV-4 and PAstV-5 were 25.4%(90/355),28.2%(100/355),35.2%(125/355)and 22.5%(80/355),respectively.Additionally,mixed infection was observed.Meanwhile,849 samples of healthy pigs were tested by RT-PCR,and the results demonstrated that the total positive rate of PAstV was 8.13%(69/849).Of these,the proportion of PAstV-1,PAstV-2 and PAstV-4 infection was 27.5%(19/69),37.7%(26/69)and 40.6%(28/69),and a mixed infection also existed.Further sequencing and characterization of some the selected isolates revealed low sequence identities(56.2%)with known PAstV strains,indicating the presence of novel types or genotypes of PAstVs.Furthermore,the isolation conditions of porcine astrovirus were optimized,resulting in the purification of a pure PAstV-4 strain(designated PAstV-4-GRF1).The virus was found to exhibit typical astroviral morphology,with nucleotide identity ranging from 89.9 to 95.4%with previously published PAstV-4 strains.Then,macrovirus transcriptome sequencing showed that 88.30%of the CRF1 samples were mammalian astroviruses.By species classification,PAstV 4 and PAstV 2 accounted for 21.79%and 0.32%,respectively.Phylogenetic tree analysis showed that the c15050 fragment was identical to the GRF-1 sequencing fragment of the isolated strain,and exhibited the highest homology with the Hunan PAstV-4 sequence MK460231 in China.[Conclusion]As the inaugural isolated PAstV-4 strain,it furnishes pivotal materialfor the investigation ofthe biological and pathogenic properties of this virus as well as for the prospectivedevelopment of relevant biological and diagnostic reagents.
文摘This article highlights the importance of optimizing the techniques used for isolating stromal vascular fraction cells from adipose tissue.Furthermore,by presenting key findings from the literature,it clarifies the effects of refined techniques on regenerative medicine and advocates for ongoing research and innovation to enhance therapeutic outcomes.
基金the European Research Council(ERC)under the ERC Synergy grant agreement No.951424(Water-Futures)the European Union’s Horizon 2020 research and innovation programme under grant agreement No.739551(KIOS CoE)the Government of the Republic of Cyprus through the Directorate General for European Programmes,Coordination and Development。
文摘Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.
文摘Carotenoids are a group of natural pigments that are isolated from plants and are known for their great importance in maintaining human health. Beta-carotene is an organic compound, from yellow to red-orange colour, which is found in many plants, fruits and vegetables. All carotenoids, especially beta-carotene, which is the subject of this research, are used in the pharmaceutical, food and cosmetic industries. It is also important in medicine as it prevents the occurrence of many diseases. Beta-carotene is a precursor of vitamin A and is used in various research due to its strong antioxidant effect. The highest amount of beta-carotene is found in carrots, followed by apricots, tomatoes, asparagus, broccoli, pumpkins, plums, etc. This plant pigment was isolated from carrots using a reflux extraction method using the organic solvents methanol and methylene chloride. The isolated carotenoid was confirmed by UV, TLC, FTIR, and HPLC methods. The absorption maxima of the UV spectrum of the isolated compound (β-carotene) range from 200 to 280 nm and 400 to 500 nm. The identification of beta-carotene was done by analysis using the FTIR method, where functional groups that are present indicate the isolated compound. HPLC method is rapid, effective and sensitive for carotenoid analysis. Analysis of the HPLC method confirms the isolated compound with an absorption maximum of 448 nm, which was compared with the standard.
文摘BACKGROUND Emergency pancreaticoduodenectomy(EPD)is a rare event for complex periam-pullary etiology.Increased intraoperative blood loss is correlated with poor post-operative outcomes.CASE SUMMARY Two patients underwent EPD using a no-touch isolation technique,in which all arteries supplying the pancreatic head region were ligated and divided before manipulation of the pancreatic head and duodenum.The operative times were 220 and 239 min,and the blood loss was 70 and 270 g,respectively.The patients were discharged on the 14^(th) and 10^(th) postoperative day,respectively.Thirty-two patients underwent EPD for the treatment of neoplastic bleeding.The mean operative time was 361.6 min,and the mean blood loss was 747.3 g.The comp-lication rate was 37.5%.The in-hospital mortality rate was 9.38%.CONCLUSION The no-touch isolation technique is feasible,safe,and effective for reducing intraoperative blood loss in EPD.
文摘This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The objective of this research was to determine the effects of factors that impact the isolation process and to identify the optimal conditions for CNC isolation by using the response surface methodology. The factors that varied during the process were the quantity of MCC, the concentration of sulfuric acid, the hydrolysis time and temperature, and the ultrasonic treatment time. The response measured was the yield. The study found that with 5.80 g of microcrystalline cellulose, a sulfuric acid concentration of 63.50% (w/w), a hydrolysis time of 53 minutes, a hydrolysis temperature of 69˚C, and a sonication time of 19 minutes are the ideal conditions for isolation. The experimental yield achieved was (37.84 ± 0.99) %. The main factors influencing the process were the sulfuric acid concentration, hydrolysis time and temperature, with a significant influence (p < 0.05). Infrared characterization results showed that nanocrystals were indeed isolated. With a crystallinity of 35.23 and 79.74, respectively, for Ayous wood fiber and nanocrystalline cellulose were observed by X-ray diffraction, with the formation of type II cellulose, thermodynamically more stable than native cellulose type I.