Dear Editor,Despite substantial advances in neonatal medicine, retinopathy of prematurity (ROP) continues to be a serious therapeutic challenge⑴.Visual acuity loss in patients with ROP has been associated with struct...Dear Editor,Despite substantial advances in neonatal medicine, retinopathy of prematurity (ROP) continues to be a serious therapeutic challenge⑴.Visual acuity loss in patients with ROP has been associated with structural retinal abnormalities (including retinal detachment, retinal folds, and pigmentary retinopathy), cataract, glaucoma, and amblyopia due to refractive error or strabismus[2].展开更多
This paper extends the resource drag studies by empirically investigating how spatial factors affect the regional economic growth. Using spatial panel econometric models, this paper estimates the dragging effect of en...This paper extends the resource drag studies by empirically investigating how spatial factors affect the regional economic growth. Using spatial panel econometric models, this paper estimates the dragging effect of energy resources of the Yangtze River Delta metropolitan areas. We fi nd that the growth drag of energy in the Yangtze River Delta is about 6% on average, which means that energy constraints decrease the economic growth by 6% annually, higher than the national level that has been previously measured in the literature. This result has taken into account the impact of neighboring cities' economic development, so as to obtain a more accurate estimate. Based on these measurement results, we propose some policy recommendations.展开更多
The original mathematical treatment used in the analysis of the Fizeau experiment of 1851, which measured the relative speed of light in a moving medium, assumes that light travels through the water in a smooth contin...The original mathematical treatment used in the analysis of the Fizeau experiment of 1851, which measured the relative speed of light in a moving medium, assumes that light travels through the water in a smooth continuous flow, at a speed less than the speed of light in a vacuum (relative to the water). Thus, it assumes that the water’s velocity vector can simply be added to that of the light. However, light is transmitted through optical media, such as water, by a continuous process of charge excitation (semi-absorption) and re-emission by the water molecules;but travels between them at the full speed of light (in a vacuum). Thus, the mathematics describing the process of Fresnel dragging must be formulated differently and can then be explained by classical physics, allowing the entire process to be fully visualized.展开更多
In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend ...In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend the work to Kerr-Newman black hole in dragging coordinates frame.It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame,which supports and extends Robinson and Wilczek's opinion.展开更多
The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to th...The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration.展开更多
The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a stra...The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a straightforward mathematical method.展开更多
The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done i...The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done in the last 60 years has shown experimental evidence that the reality may be somehow more complex. That complexity was confirmed by the author of this paper and he goes farther announcing that the Sun is emitting particles with 44 m spatial periodicity that creates isotropic gravitational effects. Those effects are identical to the ones produced by dragging forces according to the General Theory of Relativity under the Kerr’s Metric. The purpose of this paper is to introduce experimental evidence confirming the author’s predictions that the Moon can modify the dragging force coming from the Sun’s core.展开更多
To date,several off-the-shelf products such as artificial blood vessel grafts have been reported and clinically tested for small diameter vessel(SDV)replacement.However,conventional artificial blood vessel grafts lack...To date,several off-the-shelf products such as artificial blood vessel grafts have been reported and clinically tested for small diameter vessel(SDV)replacement.However,conventional artificial blood vessel grafts lack endothelium and,thus,are not ideal for SDV transplantation as they can cause thrombosis.In addition,a suc-cessful artificial blood vessel graft for SDV must have sufficient mechanical properties to withstand various external stresses.Here,we developed a spontaneous cellular assembly SDV(S-SDV)that develops without additional intervention.By improving the dragging 3D printing technique,SDV constructs with free-form,multilayers and controllable pore size can be fabricated at once.Then,The S-SDV filled in the natural poly-mer bioink containing human umbilical vein endothelial cells(HUVECs)and human aorta smooth muscle cells(HAoSMCs).The endothelium can be induced by migration and self-assembly of endothelial cells through pores of the SDV construct.The antiplatelet adhesion of the formed endothelium on the luminal surface was also confirmed.In addition,this S-SDV had sufficient mechanical properties(burst pressure,suture retention,leakage test)for transplantation.We believe that the S-SDV could address the challenges of conventional SDVs:notably,endothelial formation and mechanical properties.In particular,the S-SDV can be designed simply as a free-form structure with a desired pore size.Since endothelial formation through the pore is easy even in free-form con-structs,it is expected to be useful for endothelial formation in vascular structures with branch or curve shapes,and in other tubular tissues such as the esophagus.展开更多
A new scheme focusing on the surface plasmon polariton interferometry between the metal and dielectric interface is introduced. The phase shift is measured by using surface plasmon polariton wave, generated at the int...A new scheme focusing on the surface plasmon polariton interferometry between the metal and dielectric interface is introduced. The phase shift is measured by using surface plasmon polariton wave, generated at the interface of metallic and dielectric media. The phase shift of SPPs is modi?ed under phase and amplitude control of complex conductivity for interferometry. The control ?elds strongly in?uence the phase shift of SPPs for detection of molecular motion. The phase shift of SPPs is further modi?ed by Plasmon polariton Fizeaus dragging effect. We measure 20%–25%fractional change in delay and their phases shift between two left and right SPPs modes. Our results may have signi?cant applications in sensor interferometer technology.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa...Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.展开更多
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th...To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.展开更多
The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performa...The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction.展开更多
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ...A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car.展开更多
When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necess...When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.展开更多
To achieve hydrodynamic design excellence in Autonomous Underwater Vehicles(AUVs)largely depends on the accurate prediction of lift and drag forces.The study presents Computational Fluid Dynamics(CFD)-based lift and d...To achieve hydrodynamic design excellence in Autonomous Underwater Vehicles(AUVs)largely depends on the accurate prediction of lift and drag forces.The study presents Computational Fluid Dynamics(CFD)-based lift and drag estimations of a novel torpedo-shaped flight-style AUV with bow-wings.The horizontal bow-wings are provided to accommodate the electromagnetic arrays used to perform the cable detection and tracking operations near the seabed.The hydrodynamic performance of the AUV due to addition of these horizontal bow-wings is required to be investigated,particularly at the initial design stage.Hence,CFD techniques are employed to compute the lift and drag forces observed by the flight-style AUV,maneuvering underwater at different angles of attack and varying speeds.The Reynolds-Averaged Navier-Stokes Equations(RANSE)closure is achieved by employing the modified k-ϵ model and Two-Scale Wall Function(2-SWF)approach is used for boundary layer treatment.Further,the study also highlights the unique mesh refinement and solution-adaptive meshing techniques to perform the CFD simulations in Solidworks Flow Simulation(SWFS)environment.The drag polar curve for flight-style AUV with and without bow-wings is generated using the computed lift and drag coefficients.The curve provided essential insights for achieving hydrodynamically efficient and optimized AUV design.From the drag polar curve,it is revealed that due to horizontal bow-wings,the flight-style AUV is capable to generate higher lift with less drag and thus,it gives better lift-to-drag ratio compared to the AUV without bow-wings.Moreover,simulated results of axial drag observed by the AUV have also been compared with free-running experimental results and are found in good agreement.展开更多
In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. Ther...In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension.展开更多
In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, em...In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems.展开更多
The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a...The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.展开更多
基金Supported in part by the National Institute of Health,Bethesda,Maryland(Grant P30-EY014801)an unrestricted grant to the University of Miami from Research to Prevent Blindness,New York,New York,USA
文摘Dear Editor,Despite substantial advances in neonatal medicine, retinopathy of prematurity (ROP) continues to be a serious therapeutic challenge⑴.Visual acuity loss in patients with ROP has been associated with structural retinal abnormalities (including retinal detachment, retinal folds, and pigmentary retinopathy), cataract, glaucoma, and amblyopia due to refractive error or strabismus[2].
基金supported by the National Natural Science Foundation of China(Grant No.71373079)
文摘This paper extends the resource drag studies by empirically investigating how spatial factors affect the regional economic growth. Using spatial panel econometric models, this paper estimates the dragging effect of energy resources of the Yangtze River Delta metropolitan areas. We fi nd that the growth drag of energy in the Yangtze River Delta is about 6% on average, which means that energy constraints decrease the economic growth by 6% annually, higher than the national level that has been previously measured in the literature. This result has taken into account the impact of neighboring cities' economic development, so as to obtain a more accurate estimate. Based on these measurement results, we propose some policy recommendations.
文摘The original mathematical treatment used in the analysis of the Fizeau experiment of 1851, which measured the relative speed of light in a moving medium, assumes that light travels through the water in a smooth continuous flow, at a speed less than the speed of light in a vacuum (relative to the water). Thus, it assumes that the water’s velocity vector can simply be added to that of the light. However, light is transmitted through optical media, such as water, by a continuous process of charge excitation (semi-absorption) and re-emission by the water molecules;but travels between them at the full speed of light (in a vacuum). Thus, the mathematics describing the process of Fresnel dragging must be formulated differently and can then be explained by classical physics, allowing the entire process to be fully visualized.
基金supported by National Natural Science Foundation of China under Grant No.10773008
文摘In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend the work to Kerr-Newman black hole in dragging coordinates frame.It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame,which supports and extends Robinson and Wilczek's opinion.
基金National Natural Science Foundation of China under Grant Nos.10647116 and 10575140the China Postdoctoral Science Foundation under Grant No.2005037175
文摘The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration.
文摘The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a straightforward mathematical method.
文摘The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done in the last 60 years has shown experimental evidence that the reality may be somehow more complex. That complexity was confirmed by the author of this paper and he goes farther announcing that the Sun is emitting particles with 44 m spatial periodicity that creates isotropic gravitational effects. Those effects are identical to the ones produced by dragging forces according to the General Theory of Relativity under the Kerr’s Metric. The purpose of this paper is to introduce experimental evidence confirming the author’s predictions that the Moon can modify the dragging force coming from the Sun’s core.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A2C2008149,2021R1C1C1008767)the Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT,and Ministry of Health and Welfare(21A0104L1,Republic of Korea)+1 种基金Korea Health Technology R&D Project through the Korea Health In-dustry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HI21C1100000021)the Alchemist Project(20012378,Development of Meta Soft Organ Module Manufacturing Technology without Immunity Rejection and Module Assembly Robot System)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘To date,several off-the-shelf products such as artificial blood vessel grafts have been reported and clinically tested for small diameter vessel(SDV)replacement.However,conventional artificial blood vessel grafts lack endothelium and,thus,are not ideal for SDV transplantation as they can cause thrombosis.In addition,a suc-cessful artificial blood vessel graft for SDV must have sufficient mechanical properties to withstand various external stresses.Here,we developed a spontaneous cellular assembly SDV(S-SDV)that develops without additional intervention.By improving the dragging 3D printing technique,SDV constructs with free-form,multilayers and controllable pore size can be fabricated at once.Then,The S-SDV filled in the natural poly-mer bioink containing human umbilical vein endothelial cells(HUVECs)and human aorta smooth muscle cells(HAoSMCs).The endothelium can be induced by migration and self-assembly of endothelial cells through pores of the SDV construct.The antiplatelet adhesion of the formed endothelium on the luminal surface was also confirmed.In addition,this S-SDV had sufficient mechanical properties(burst pressure,suture retention,leakage test)for transplantation.We believe that the S-SDV could address the challenges of conventional SDVs:notably,endothelial formation and mechanical properties.In particular,the S-SDV can be designed simply as a free-form structure with a desired pore size.Since endothelial formation through the pore is easy even in free-form con-structs,it is expected to be useful for endothelial formation in vascular structures with branch or curve shapes,and in other tubular tissues such as the esophagus.
文摘A new scheme focusing on the surface plasmon polariton interferometry between the metal and dielectric interface is introduced. The phase shift is measured by using surface plasmon polariton wave, generated at the interface of metallic and dielectric media. The phase shift of SPPs is modi?ed under phase and amplitude control of complex conductivity for interferometry. The control ?elds strongly in?uence the phase shift of SPPs for detection of molecular motion. The phase shift of SPPs is further modi?ed by Plasmon polariton Fizeaus dragging effect. We measure 20%–25%fractional change in delay and their phases shift between two left and right SPPs modes. Our results may have signi?cant applications in sensor interferometer technology.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金supported by the National Natural Science Foundation of China(Nos.52222403,52074333,52120105007)Taishan Scholar Young Expert(No.tsqn202211079)。
文摘Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
基金supported by National Natural Science Foundation of China (Nos.12002384, U2341277,and 52025064)Foundation Strengthening Program (No.2021JJ-0786)。
文摘To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
基金funding of the National Natural Science Foundation of China (Nos.52072156,51605198)Postdoctoral Foundation of China (2020M682269).
文摘The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction.
基金supported by the National Natural Science Foundation of China(12372049)Sichuan Science and Technology Program(2023JDRC0062)+1 种基金Science and Technology Program of China National Accreditation Service for Conformity Assessment(2022CNAS15)the Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car.
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan Universitysupport of Prince Sultan University in paying the article processing charges(APC)for this publication.
文摘When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.52131101 and 52071153)in part by Hubei Natural Science Foundation for Innovation Groups(Grant No.2021CFA026).
文摘To achieve hydrodynamic design excellence in Autonomous Underwater Vehicles(AUVs)largely depends on the accurate prediction of lift and drag forces.The study presents Computational Fluid Dynamics(CFD)-based lift and drag estimations of a novel torpedo-shaped flight-style AUV with bow-wings.The horizontal bow-wings are provided to accommodate the electromagnetic arrays used to perform the cable detection and tracking operations near the seabed.The hydrodynamic performance of the AUV due to addition of these horizontal bow-wings is required to be investigated,particularly at the initial design stage.Hence,CFD techniques are employed to compute the lift and drag forces observed by the flight-style AUV,maneuvering underwater at different angles of attack and varying speeds.The Reynolds-Averaged Navier-Stokes Equations(RANSE)closure is achieved by employing the modified k-ϵ model and Two-Scale Wall Function(2-SWF)approach is used for boundary layer treatment.Further,the study also highlights the unique mesh refinement and solution-adaptive meshing techniques to perform the CFD simulations in Solidworks Flow Simulation(SWFS)environment.The drag polar curve for flight-style AUV with and without bow-wings is generated using the computed lift and drag coefficients.The curve provided essential insights for achieving hydrodynamically efficient and optimized AUV design.From the drag polar curve,it is revealed that due to horizontal bow-wings,the flight-style AUV is capable to generate higher lift with less drag and thus,it gives better lift-to-drag ratio compared to the AUV without bow-wings.Moreover,simulated results of axial drag observed by the AUV have also been compared with free-running experimental results and are found in good agreement.
文摘In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension.
文摘In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems.
文摘The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.