This study was carried out to explore the effects of leaching salinity under subsurface drainage and mulched drip irrigation on saline and alkaline land from the year 2012 to 2014 in Xinjiang Region of China.Three sam...This study was carried out to explore the effects of leaching salinity under subsurface drainage and mulched drip irrigation on saline and alkaline land from the year 2012 to 2014 in Xinjiang Region of China.Three sampled points were both set up in the subsurface drainage and ditch drainage areas.Soil samples were obtained at varied depths.Through observing the underground water table under each sampled point and measuring the electrical conductivity(EC)of the soil extracts,the following results were obtained:(1)after draining,the underground water table ranged from 1.6 m to 2.2 m in the ditch drainage area,and ranged from 1.5 m to 2.2 m in the subsurface drainage area.Thus,both irrigations could control underground water table below 1.5 m which is deeper than the main water-absorbing layers of crop root systems;(2)for subsurface drainage,the closer to the pipe,the better to leach salinity;decreased from the initial 13.54-22.95 g/kg to 8.20-11.47 g/kg;(3)compared with the amounts in 2012,soil total salt at each sampling point at depths of 0-200 cm in subsurface drainage area decreased by 42.99%,36.84%and 24.41%respectively in 2014;and in ditch drainage area decreased by 46.85%,38.12%and 30.80%respectively in 2014.The results showed both ditch and subsurface drainage could leach salinity effectively.展开更多
In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simul...In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen(NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.展开更多
基金the National Natural Science Foundation of China(U1203280,U1403183,51269067,41361071,51669029)the National Key Research Project“13th Five-year”(2016YFC0501402,2016YFC0501406)the National Key Research Project“12th Five-year”(2015BAD20B03).
文摘This study was carried out to explore the effects of leaching salinity under subsurface drainage and mulched drip irrigation on saline and alkaline land from the year 2012 to 2014 in Xinjiang Region of China.Three sampled points were both set up in the subsurface drainage and ditch drainage areas.Soil samples were obtained at varied depths.Through observing the underground water table under each sampled point and measuring the electrical conductivity(EC)of the soil extracts,the following results were obtained:(1)after draining,the underground water table ranged from 1.6 m to 2.2 m in the ditch drainage area,and ranged from 1.5 m to 2.2 m in the subsurface drainage area.Thus,both irrigations could control underground water table below 1.5 m which is deeper than the main water-absorbing layers of crop root systems;(2)for subsurface drainage,the closer to the pipe,the better to leach salinity;decreased from the initial 13.54-22.95 g/kg to 8.20-11.47 g/kg;(3)compared with the amounts in 2012,soil total salt at each sampling point at depths of 0-200 cm in subsurface drainage area decreased by 42.99%,36.84%and 24.41%respectively in 2014;and in ditch drainage area decreased by 46.85%,38.12%and 30.80%respectively in 2014.The results showed both ditch and subsurface drainage could leach salinity effectively.
基金Project supported by the National Science Funds for Creative Research Groups of China(Grant No.51421006)the National Major Projects of Water Pollution Control and Management Technology(No.2017ZX07204003)+2 种基金the National Key Plan for Research and Development of China(Grant 2016YFC0502203)the Key Program of National Natural Science Foundation of China(Grant No.91647206)the Qing Lan Project of Jiangsu Province
文摘In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen(NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.