During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated...The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.展开更多
Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu...Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.展开更多
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a...Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.展开更多
The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.A...The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.As a component of the 4th conceptual CEPC detector,the drift chamber facilitates the measurement of charged particles.This study implemented a Geant4-based simulation and track reconstruction for the drift chamber.For the simulation,detector construction and response were implemented and added to the CEPC simulation chain.The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit.Using the simulated data,the tracking performance was studied.The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.展开更多
An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was develo...An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.展开更多
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re...The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.展开更多
Consider the following McKean-Vlasov SDE:dXt=√2dWt+∫R_(d)K(t,Xt-y)μX_(t)(dy)dt,X_(0)=X,whereμXt stands forthedistributionof Xt and K(t,x):R_(+)×R^(d)→is a time-dependent divergence free vector field.Under th...Consider the following McKean-Vlasov SDE:dXt=√2dWt+∫R_(d)K(t,Xt-y)μX_(t)(dy)dt,X_(0)=X,whereμXt stands forthedistributionof Xt and K(t,x):R_(+)×R^(d)→is a time-dependent divergence free vector field.Under the assumption K∈L_(x)^(p)with weak solutions to the above SDE.As an application,we provide a new proof for the existence of weak solutions to 2D Navier-Stokes equations with measure as initial vorticity.展开更多
The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conv...The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.展开更多
In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,trunca...In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.展开更多
Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investi...Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of a rubber hand is temporarily induced. It was shown that external and continuous cooling of the palm enhanced the RHI, suggesting an association between altered the autonomic nervous system regulation and altered the sense of ownership of a specific limb. Purpose: To investigate whether artificially cooling the entire hand for a short period affects the magnitude of the illusion. Methods: Participants immersed their entire hand in cool, cold, or warm water for 1 min before the RHI procedure. Results: We found that cooling the entire hand enhanced the proprioceptive drift during the RHI but not the subjective feeling of ownership. In contrast, warming and intense cooling of the entire hand did not affect the RHI strength. Conclusion: Our results suggest that transient and moderate cooling of the entire hand was sufficient in enhancing the illusory disembodiment of one’s own hand.展开更多
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabricat...Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabrication process to improve the properties of the front-ended device.Another is to compensate the drift phenomenon by adding extra drift compensation circuit or software in the back-ended readout circuit.In this study,a drift calibration method for the potentiometric sensor was presented and the drift calibration method was performed by using the circuit.According to experimental results,the drift phenomenon of the SnO_2 pH electrode was reduced by the drift calibration device.展开更多
A data gathering system is designed for the interferometric fiber optic gyroscope (IFOG) of land strapdown inertial system. IFOG is tested and the testing curve is given. The test data of IFOG are analyzed with Allan ...A data gathering system is designed for the interferometric fiber optic gyroscope (IFOG) of land strapdown inertial system. IFOG is tested and the testing curve is given. The test data of IFOG are analyzed with Allan variance method and each error coefficient is identified. Furthermore, a random drift error model for IFOG is built by the method of time series analysis. The conclusion provides supports for improving IFOG design and compensating for errors of IFOG in practice.展开更多
Based on micro-displacement measurement principles of the spherical differential capacitance sensor, the relationship between the capacitance variation and the micro-displacement of each pair of detecting electrodes f...Based on micro-displacement measurement principles of the spherical differential capacitance sensor, the relationship between the capacitance variation and the micro-displacement of each pair of detecting electrodes for the superconducting gyroscope (SCG) with eight detecting electrodes is analyzed. The model of the SCG rotor drift is established through dimensionless processing, linearization within micro-displacement and the least-square approach. Both the measurement scheme of the SCG rotor drift based on the model and its parameter relationship are presented. To guarantee the potential of the suspension rotor to be zero, the distributing scheme of four pairs of detecting electrodes is presented. The scheme can measure the magnitude and the direction of the rotor drift. The negative factors for affecting the measurement precision of .the SCG rotor drift and simulation results of the total effects are given. Simulation results show that the distributing capacitance of these differential capacitance sensors, the zero potential of the rotor and the model error are the major negative factors. The methods for eliminating those negative factors and the application range of the model are given. The model ensures the relationship between the output voltage and the rotor drift be linear.展开更多
A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akai...A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.展开更多
In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmi...In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS.There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about100 km with a mean speed about 0.076 m/s. All the drifters passing Korean coast were staggering for more than10 days west of a protruding cape of central Korea. A small-scale cyclonic eddy centered at around 120.5°E/35.1°N with a mean speed of 0.048 m/s was observed in western part of the southern YS.展开更多
Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According t...Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.展开更多
Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 gro...Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 groups of experimental data from 32 different data sources is established.Considering the effects of fluid viscosity,pipe size,interfacial tension,fluid density,pipe inclination and other factors on multi-phase flow parameters,a new gas-liquid two-phase drift flow relation suitable for the full flow pattern and full dip range is established.The distribution coefficient and gas drift velocity models with a pipe inclination range of-90°–90°are established by means of theoretical analysis and data-driven.Compared with three existing models,the proposed models have the highest prediction accuracy and most stable performance.Using a well killing case with the backpressure method in the field,the applicability of the proposed model under the flow conditions with a pipe inclination range of-90°–80°is verified.The errors of the calculated shut in casing pressure,initial back casing pressure and casing pressure when adjusting the displacement are 2.58%,3.43%,5.35%,respectively.The calculated results of the model are in good agreement with the field backpressure data.展开更多
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
基金supported by the National Natural Science Foundation of China(No.42176020)the National Key Research and Development Program(No.2022 YFC3105002).
文摘The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.52171246)+4 种基金The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019491911)the Open Research Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2005)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3136)the Natural Science Foundation of Hunan Province(Grant No.2022JJ20041)Educational Science Foundation of Hunan Province(Grant No.23A0265)。
文摘Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.
基金financially supported by the National Key Research and Development Program of China(2017YFD0200304)。
文摘Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12025502 and 12341504)。
文摘The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.As a component of the 4th conceptual CEPC detector,the drift chamber facilitates the measurement of charged particles.This study implemented a Geant4-based simulation and track reconstruction for the drift chamber.For the simulation,detector construction and response were implemented and added to the CEPC simulation chain.The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit.Using the simulated data,the tracking performance was studied.The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.
基金supported by the Natural Resources Development Special Fund Project of Jiangsu Province(No.JSZRHYKJ202009)the Taishan Scholar Funds(No.tsqn 201812022)+2 种基金the Fundamental Research Funds for the Central Universities(No.202072001)the Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Beibu Gulf University(No.2021KF03)the National Natural Science Foundation of China(No.42176020).
文摘An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975062 and 11605021)the Fundamental Research Funds for the Central Universities (Grant No.3132023192)。
文摘The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.
基金supported by NNSFC Grant of China(No.11731009,12131019)the DFG through the CRC 1283“Taming uncertainty and profiting from randomness and low regularity in analysis,stochastics and their applications”.
文摘Consider the following McKean-Vlasov SDE:dXt=√2dWt+∫R_(d)K(t,Xt-y)μX_(t)(dy)dt,X_(0)=X,whereμXt stands forthedistributionof Xt and K(t,x):R_(+)×R^(d)→is a time-dependent divergence free vector field.Under the assumption K∈L_(x)^(p)with weak solutions to the above SDE.As an application,we provide a new proof for the existence of weak solutions to 2D Navier-Stokes equations with measure as initial vorticity.
基金financially supported by the National Natural Science Foundation of China(Grant No.62074089)the Natural Science Foundation of Ningbo City,China(Grant No.2022J072)+1 种基金the Youth Science and Technology Innovation Leading Talent Project of Ningbo City,China(Grant No.2023QL005)sponsored by the K.C.Wong Magna Fund in Ningbo University。
文摘The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.
基金Supported by the National Natural Science Foundation of China(11926322)the Fundamental Research Funds for the Central Universities of South-Central MinZu University(CZY22013,3212023sycxjj001)。
文摘In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.
文摘Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of a rubber hand is temporarily induced. It was shown that external and continuous cooling of the palm enhanced the RHI, suggesting an association between altered the autonomic nervous system regulation and altered the sense of ownership of a specific limb. Purpose: To investigate whether artificially cooling the entire hand for a short period affects the magnitude of the illusion. Methods: Participants immersed their entire hand in cool, cold, or warm water for 1 min before the RHI procedure. Results: We found that cooling the entire hand enhanced the proprioceptive drift during the RHI but not the subjective feeling of ownership. In contrast, warming and intense cooling of the entire hand did not affect the RHI strength. Conclusion: Our results suggest that transient and moderate cooling of the entire hand was sufficient in enhancing the illusory disembodiment of one’s own hand.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
文摘Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabrication process to improve the properties of the front-ended device.Another is to compensate the drift phenomenon by adding extra drift compensation circuit or software in the back-ended readout circuit.In this study,a drift calibration method for the potentiometric sensor was presented and the drift calibration method was performed by using the circuit.According to experimental results,the drift phenomenon of the SnO_2 pH electrode was reduced by the drift calibration device.
文摘A data gathering system is designed for the interferometric fiber optic gyroscope (IFOG) of land strapdown inertial system. IFOG is tested and the testing curve is given. The test data of IFOG are analyzed with Allan variance method and each error coefficient is identified. Furthermore, a random drift error model for IFOG is built by the method of time series analysis. The conclusion provides supports for improving IFOG design and compensating for errors of IFOG in practice.
文摘Based on micro-displacement measurement principles of the spherical differential capacitance sensor, the relationship between the capacitance variation and the micro-displacement of each pair of detecting electrodes for the superconducting gyroscope (SCG) with eight detecting electrodes is analyzed. The model of the SCG rotor drift is established through dimensionless processing, linearization within micro-displacement and the least-square approach. Both the measurement scheme of the SCG rotor drift based on the model and its parameter relationship are presented. To guarantee the potential of the suspension rotor to be zero, the distributing scheme of four pairs of detecting electrodes is presented. The scheme can measure the magnitude and the direction of the rotor drift. The negative factors for affecting the measurement precision of .the SCG rotor drift and simulation results of the total effects are given. Simulation results show that the distributing capacitance of these differential capacitance sensors, the zero potential of the rotor and the model error are the major negative factors. The methods for eliminating those negative factors and the application range of the model are given. The model ensures the relationship between the output voltage and the rotor drift be linear.
文摘A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.
文摘In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS.There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about100 km with a mean speed about 0.076 m/s. All the drifters passing Korean coast were staggering for more than10 days west of a protruding cape of central Korea. A small-scale cyclonic eddy centered at around 120.5°E/35.1°N with a mean speed of 0.048 m/s was observed in western part of the southern YS.
基金the National Natural Science Foundation of China (Grant no. 40631006)the National Major Science Project of China for Global Change Research (Grant no. 2010CB951403)
文摘Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.
基金Supported by the Project of National Natural Science Foundation of China(51991363,51974350)Young Changjiang Scholars Award Program(Q2016135)Ministry of Education Innovation Team Project(IRT_14R58)。
文摘Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 groups of experimental data from 32 different data sources is established.Considering the effects of fluid viscosity,pipe size,interfacial tension,fluid density,pipe inclination and other factors on multi-phase flow parameters,a new gas-liquid two-phase drift flow relation suitable for the full flow pattern and full dip range is established.The distribution coefficient and gas drift velocity models with a pipe inclination range of-90°–90°are established by means of theoretical analysis and data-driven.Compared with three existing models,the proposed models have the highest prediction accuracy and most stable performance.Using a well killing case with the backpressure method in the field,the applicability of the proposed model under the flow conditions with a pipe inclination range of-90°–80°is verified.The errors of the calculated shut in casing pressure,initial back casing pressure and casing pressure when adjusting the displacement are 2.58%,3.43%,5.35%,respectively.The calculated results of the model are in good agreement with the field backpressure data.