期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Discussion of reasonable drilling parameters in impregnated diamond bit drilling
1
作者 PAK Kumdol HO Yinchol +2 位作者 PENG Jianming RI Jaemyong HAN Changson 《Global Geology》 2023年第2期114-121,共8页
The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this ... The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal. 展开更多
关键词 rate of penetration(ROP) impregnated diamond bit drilling operating parameter artificial neural network
下载PDF
Determination of the constant m_(i) in the Hoek-Brown criterion of rock based on drilling parameters 被引量:8
2
作者 Haoteng Wang Mingming He +1 位作者 Zhiqiang Zhang Jiwei Zhu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期747-759,共13页
The constant m_(i) in the Hoek-Brown(H-B) criterion is a fundamental parameter required for determining the compressive strength of rock. In this paper, drilling parameters provide a new basis for determining the cons... The constant m_(i) in the Hoek-Brown(H-B) criterion is a fundamental parameter required for determining the compressive strength of rock. In this paper, drilling parameters provide a new basis for determining the constant mi. An analytical relationship between the drilling parameters and constant miis established in consideration of the contact response between the drilling bit and the cut rock in the crushed zone.New models are developed to predict the triaxial compressive strength(TCS), internal friction angle φand cohesion c of rock. Drilling tests are carried out on 6 rock types to study the correlation between φ and m_(i). A comparison between the predicted values of rock mechanical properties and the measured values from the laboratory is performed to verify the accuracy of the proposed model(yielding an error less than 10%). The TCSs and constant m_(i) values of fifteen rocks are cited to validate the accuracy of the proposed model. The result shows that the proposed model predicts the TCS and constant m_(i) within a maximum error of 20%. The method can be conveniently applied to the rock mechanical properties. 展开更多
关键词 Constant miin the H-B criterion Analytical model Friction angle drilling parameters Triaxial compressive strength
下载PDF
Research on drilling parameters of engine-powered auger ice drill
3
作者 mikhail sysoev pavel talalay 《Global Geology》 2016年第1期1-5,共5页
Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- e... Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process. 展开更多
关键词 engine-powered auger ice drill gasoline engine drilling parameters rate of penetration (ROP) weight on bit (WOB) torque
下载PDF
Testing method of rock structural plane using digital drilling
4
作者 Qi Wang Yuncai Wang +4 位作者 Bei Jiang Hongke Gao Fenglin Ma Dahu Zhai Songlin Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2563-2578,共16页
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua... The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering. 展开更多
关键词 Structural planes in the rock mass Digital drilling drilling parameters Equivalent compressive strength Testing method
下载PDF
Stratigraphic identification using real-time drilling data
5
作者 Minglong You Zhikai Hong +3 位作者 Fei Tan Hao Wen Zhanrong Zhang Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3452-3464,共13页
Identification of stratigraphic interfaces and lithology is a key aspect in geological and geotechnical investigations.In this study,a monitoring while-drilling system was developed,along with a corresponding data pre... Identification of stratigraphic interfaces and lithology is a key aspect in geological and geotechnical investigations.In this study,a monitoring while-drilling system was developed,along with a corresponding data pre-processing method.The method can handle invalid drilling data generated during manual operations.The correlation between various drilling parameters was analyzed,and a database of stratigraphic interfaces and key lithology identification based on the monitoring parameters was established.The average drilling speed was found to be the most suitable parameter for stratigraphic and lithology identification,and when the average drilling speed varied over a wide range,it corresponded to a stratigraphic interface.The average drilling speeds in sandy mudstone and sandstone strata were in the ranges of 0.1e0.2 m/min and 0.2e0.29 m/min,respectively.The results obtained using the present method were consistent with geotechnical survey results.The proposed method can be used for realtime lithology identification and represents a novel approach for intelligent geotechnical surveying. 展开更多
关键词 Monitoring while-drilling drilling parameters Geotechnical stratigraphy Lithology identification
下载PDF
Analysis of effects of operating parameters on rate of penetration in drilling process with air down-the-hole hammer 被引量:1
6
作者 HO Yinchol PAK Kumdol +3 位作者 PENG Jianming RI Jaemyong KIM Yongnam CHOE Cholho 《Global Geology》 2021年第1期64-70,共7页
Air down-the-hole(DTH)hammer drilling has long been recognized to have the potential of drilling faster than conventional rotary drill,especially in some hard rocks such as granite,sandstone,limestone,dolomite,etc.wit... Air down-the-hole(DTH)hammer drilling has long been recognized to have the potential of drilling faster than conventional rotary drill,especially in some hard rocks such as granite,sandstone,limestone,dolomite,etc.with the same weight on bit(WOB)and rotations per minute(RPM).So,it has been widely used in many drilling fields including mineral resource exploration drilling,oil and gas drilling and geothermal drilling.In order to reduce drilling cost by selecting optimal drilling parameters,rate of penetration(ROP)should be estimated accurately and the effects of different factors on ROP should be analyzed.In this research,ANN model with several multi-layer perception back propagation(BP)networks for predicting ROP of air DTH hammer drilling was developed using controllable parameters such as impact energy,impact frequency,WOB,RPM and bit operating time for the formations with a certain drillability index of rock.Several BP neural networks with the different neurons in hidden layers were developed and compared for selecting optimal architecture of ANN.The effects of the drilling parameters such as impact energy,impacting frequency,WOB,RPM and bit operating time on the ROP of air DTH hammer drilling were investigated by trained ANN.From the analyses,the optimum range of drilling parameters for providing high ROP were determined and analyzed for a formation with a certain drillability index of rock.The methodology proposed in this study can be used in many mathematical problems for optimization of drilling process with air DTH hammer. 展开更多
关键词 ROP air DTH hammer drilling drilling parameter artificial neural network optimization
下载PDF
Measurement-while-drilling technique and its scope in design and prediction of rock blasting 被引量:1
7
作者 Rai Piyush Schunnesson Hakan +1 位作者 Lindqvist Per-Arne Kumar Uday 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期711-719,共9页
With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important... With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important opportunity to quickly and accurately measure the geo-mechanical features of the rock mass on-site, much in advance of the downstream operations. It is well established that even the slightest variation in lithology, ground conditions, blast designs vis-a-vis geologic features and explosives performance, results in drastic changes in fragmentation results. Keeping in mind the importance of state-of-the-art measurement-while-drilling (MWD) technique, the current paper focuses on integrating this technique with the blasting operation in order to enhance the blasting designs and results. The paper presents a preliminary understanding of various blasting models, blastability and other related concepts, to review the state-of-the-art advancements and researches done in this area. In light of this, the paper highlights the future needs and implications on drill monitoring systems for improved information to enhnnrp th~ hl^tin~ r^HIt~ 展开更多
关键词 Rock blasting Drill monitoring parameters Rock factor Drill rod vibrations
下载PDF
Application on drilling parameter monitor in drilling engineering monitoring 被引量:1
8
作者 Shu DIAO Zhenbao LING Wenjing LIANG 《Global Geology》 2008年第2期83-87,共5页
The drilling parameter monitor is an important tool in drilling engineering applied to monitoring drilling process,carrying out scientific analysis and decision--making.Based on discussing the present development situ... The drilling parameter monitor is an important tool in drilling engineering applied to monitoring drilling process,carrying out scientific analysis and decision--making.Based on discussing the present development situation of the domestic and foreign drilling machine parameter monitors,the metering scheme for vehicle--loaded drilling parameter monitor was designed.By using detection system for MSP430 single--chip microcomputer(SCM) in combination with peripheral circuit such as sensors,the drilling--rig control system was obtained to detect,and for every parameter in real--time display in order to keep operating the drilling rig status.The experiment shows that the drilling parameter monitor reaches design requirements and can be applied to drilling engineering monitoring,which has characters such as simple structure,high credibility and low cost. 展开更多
关键词 drilling parameter monitor SENSOR MSP430 single-chip microcomputer
下载PDF
Development of a drill energy utilization index for aiding selection of drill machines in surface mines 被引量:1
9
作者 Kumar Suraj Rahul Talreja Murthy V.M.S.R. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期393-399,共7页
Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- t... Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations. 展开更多
关键词 Drill cutting parameter Coarseness index Mean chip size Specific surface area Particle size distribution curves Drill energy ptilization index
下载PDF
Drill string dynamic characteristics simulation for the ultra-deep well drilling on the south margins of Junggar Basin 被引量:1
10
作者 Yuan Li Jianggang Shi +2 位作者 Minghu Nie Chi Peng Yingjie Wang 《Petroleum》 EI CSCD 2023年第2期205-213,共9页
Improper drilling parameters may cause severe vibration of drill string which leads to reduce the rate of penetration and drilling tool premature failure accidents in the drilling process of ultra-deep well.The study ... Improper drilling parameters may cause severe vibration of drill string which leads to reduce the rate of penetration and drilling tool premature failure accidents in the drilling process of ultra-deep well.The study on dynamic characteristics of drill string plays an important role in increasing the safety of drilling tool and optimizing the drilling parameters.Considering the influences of real borehole trajectory,interaction between bit and formation,contact between drill string and borehole wall,stiction of drilling fluid and other factors,a comprehensive drill string dynamic model was established to simulate the changes of wellhead hook load,torque,equivalent stress of drill string and BHA(bottomhole assembly)section acceleration and motion trajectory with time at different WOBs(weights on bit)and rotary speeds.The safety factor and overpull margin of wellhead drill string were calculated and the strength of drilling tool in ultra-deep well was checked using the fourth strength theory.The analysis results show that,in the drilling process of ultra-deep well,the transverse motion amplitude of the drill string near the wellhead is relatively small and vibration of drill string mainly occurs in the lower well section.As the rotary speed increases,the number of collision between lower drilling tool and borehole wall increases,wellhead transverse stress increases,change in torque is not large and change in wellhead equivalent stress is relatively small.As the WOB increases,wellhead torque will increase,axial load and equivalent stress will decrease and vibration acceleration of BHA will increase sharply.Wellhead overpull margin and safety factor will decrease with the increase of rotary speed and increase with the increase of WOB.Wellhead safety factor of S135 drilling tool in an F190.5 mm ultra-deep well on the south margins of Junggar basin changes around 1.8.The drilling tool is safe and has relatively sufficient ability to deal with the downhole accidents if a large size high steel grade drill string(F139.7 mm S135)is used.However,in view of BHA safety,neither rotary speed shall be too high nor WOB shall be too large. 展开更多
关键词 Ultra-deep well drilling tool failure Drill string dynamics Drill string strength check drilling parameter optimization
原文传递
Intelligent classification model of surrounding rock of tunnel using drilling and blasting method 被引量:13
11
作者 Mingnian Wang Siguang Zhao +4 位作者 Jianjun Tong Zhilong Wang Meng Yao Jiawang Li Wenhao Yi 《Underground Space》 SCIE EI 2021年第5期539-550,共12页
Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience... Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience.To minimize the effect of the empirical judgment on the accuracy of surrounding rock classification,it is necessary to reduce human participation.An intelligent classification technique based on information technology and artificial intelligence could overcome these issues.In this regard,using 299 groups of drilling parameters collected automatically using intelligent drill jumbos in tunnels for the Zhengzhou-Wanzhou high-speed railway in China,an intelligent-classification surrounding-rock database is constructed in this study.Based on a machine learning algorithm,an intelligent classification model is then developed,which has an overall accuracy of 91.9%.Finally,using the core of the model,the intelligent classification system for the surrounding rock of drilled and blasted tunnels is integrated,and the system is carried by intelligent jumbos to perform automatic recording and transmission of drilling parameters and intelligent classification of the surrounding rock.This approach provides a foundation for the dynamic design and construction(both conventional and intelligent)of tunnels. 展开更多
关键词 Drilled and blasted tunnel drilling parameter Machine learning Intelligent classification Surrounding rock
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部