期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fatigue test loading methodfor wagon body basedon measured load
1
作者 Qiang Zhang Xiaofeng Li Yundong Ma 《Railway Sciences》 2023年第1期68-83,共16页
Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to g... Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions,namely expansion,bouncing,rolling,torsion and pitching according to the typical motion attitude of the car body.Design/methodology/approach–On the basis of processing the measured load data,the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load.Relying on the fatigue and vibration test bench of the whole railway wagon,by taking each sinusoidal load component spectrum as the simulation target,the time waveform replication(TWR)iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench,and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.Findings–The fatigue test results on the test bench were substantially close to the measured test results on the line.According to the results,the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of16.03%–27.14%.Originality/value–The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line. 展开更多
关键词 Fatigue test of car body Measured load breakdown Load equivalence TWRiteration Drive signal
下载PDF
Virtual vibration test rig for fatigue analysis of dozer push arms
2
作者 Lei Hou Weibin Li +3 位作者 Wenyan Gu Zizheng Sun Xiangqian Zhu Jin-Hwan Choi 《International Journal of Mechanical System Dynamics》 EI 2024年第3期278-291,共14页
To obtain accurate fatigue life results for construction machinery components,acquiring load spectra is crucial,as their authenticity and validity directly determine the precision of the analysis.In working conditions... To obtain accurate fatigue life results for construction machinery components,acquiring load spectra is crucial,as their authenticity and validity directly determine the precision of the analysis.In working conditions,component attitudes change continuously,but they remain static on the vibration test rig(VTR),so the acquired target signals should match with the actual component attitudes in the driving signal generation.This paper proposes an efficient and economical simulation-based virtual VTR for fatigue analysis of dozers.First,the relationship between the push arm rotation angle and the cylinder stroke is established,since the cylinder strokes can be measured easily in data acquisition experiments.Second,load decomposition is used to determine the attitude relationship between virtual VTR conditions and actual conditions,and target signals are calculated based on this attitude relationship and measured data.According to the system's frequency response function,the driving signals are iterated until the system's response signals converge with the target signals.Finally,the iteratively obtained load spectra are utilized for fatigue life analysis.The results show that the virtual VTR can effectively and accurately obtain the results of fatigue analysis and has engineering application significance. 展开更多
关键词 virtual vibration test rig driving signal generation component attitudes fatigue analysis dozer push arm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部