Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morl...Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morlet wavelet analysis were used to analyze the change trend and temporal and spatial distribution characteristics of SPI index in the past 52 years.The results show that there were more normal years in Shandong Province,and the frequency reached 38.46%.There was severe drought in the 1980s and more wet years after 2003.SPI index showed an upward trend in spring,summer and winter but a weak arid trend in autumn.In addition,intense dry weather was more frequent in summer.Spatially,the climate was normal or humid in most areas of Shandong Province.The regions with more wet years were located in the central and northeast Shandong and the peninsula,while the climate was normal in the southwest and north of Shandong.The areas with more dry years were mainly located in the northwest of Shandong Province.There was mainly local and global drought in Shandong Province,and the arid area showed a decreasing trend.In the past 52 years,Shandong Province experienced quasi-4 times of alternation between dry and wet climate.The long period of 21 a was the first main period,and the climate would be still wet in Shandong Province in the future.In terms of mutation,the climate in Shandong Province became humid after 2003,and 2003 was the mutation point.After the abrupt change,the climate changed from gradually drying to wetting.展开更多
This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum tem...This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, wind speed and sunshine duration observed on the plateau from 1961 to 2008. The temporal-spatial distribution, anomaly distribution and sub-regional temporal variations of the terrestrial surface dry and wet conditions were analyzed as well. The results showed a decreasing trend in the annual average surface humidity from the southeast to the northwest in the research anna. Over the period of 1961-2008, an aridification tendency appeared sharply in the central interior region of the Loess Plateau, and less sharply in the middle part of the region. The border region showed the weakest tendency ol; aridification. It is clear that aridification diffused in all directions from the interior region. The spatial anomaly distribution of the terrestrial surface dry and wet conditions on the Loess Plateau can be divided into three key areas: the southern, western and eastern regions. The terrestrial annual humidity index displayed a significantly descending trend and showed remarkable abrupt changes from wet to dry in the years 1967, 1977 and 1979. In the above mentioned three key areas for dry and wet conditions, the terrestrial annual humidity index exhibited a fluctuation period of 3-4 years, while in the southern region, a fluctuation period of 7-8 years existed at the same time.展开更多
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the cli...Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.展开更多
[Objective] The research aimed to analyze the evolution situation of dry and wet degree in Benxi area in recent 57 years.[Method] By using the annual,quarterly and monthly temperature and precipitation data in Benxi a...[Objective] The research aimed to analyze the evolution situation of dry and wet degree in Benxi area in recent 57 years.[Method] By using the annual,quarterly and monthly temperature and precipitation data in Benxi area during 1953-2009,the interdecadal variations of temperature,precipitation,dry and wet index were analyzed.[Result] The annual average temperature in Benxi area displayed the obvious increase trend,and the linear trend rate was 0.29 ℃/10 a.But the precipitation showed the obvious decrease trend,and the linear trend rate was-29.01 mm/10 a.The dry and wet index showed the decrease trend,and the linear trend rate was-33.61 mm/10 a,which closely related to the rise of temperature and the decrease of precipitation after the 1980s.[Conclusion] It showed the warming-drying development trend in Benxi area.展开更多
To study the characteristics of atmospheric dry and wet deposition in the upper reaches of Baiyangdian,two sampling sites in Baoding City were monitored for 1 year from September 2018 to August 2019.The results showed...To study the characteristics of atmospheric dry and wet deposition in the upper reaches of Baiyangdian,two sampling sites in Baoding City were monitored for 1 year from September 2018 to August 2019.The results showed that the dry and wet deposition fluxes of total nitrogen(TN)during the monitoring period were 6.87 and 6.46 kg/(hm^(2)·a),respectively.The ratio of wet to dry deposition of TN was approximately 1∶1,with wet deposition being dominated by ammonium nitrogen deposition.The dry and wet deposition fluxes of total phosphorus(TP)were 0.228 and 0.125 kg/(hm^(2)·a),and it was dominated by dry deposition.The average concentration of TN in wet deposition exceeded the standard threshold for eutrophic waters,and its ecological effects on the Baiyangdian basin should be concerned.Wet deposition fluxes of nitrogen and phosphorus had a significantly positive correlation with rainfall,while their deposition concentrations were negatively correlated with rainfall.The dry deposition of atmospheric nitrogen and phosphorus was influenced by the amount of dustfall and climatic factors such as rainfall,temperature,and humidity,which mainly occurred from April to August.展开更多
<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The...<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div>展开更多
On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry a...On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.展开更多
Based on yearly precipitation and Φ20 evaporation pan data during 1951 to 1999 of 295 stations,the aridity index is calculated in this paper.According to the aridity index,the climatic regions in China are divided in...Based on yearly precipitation and Φ20 evaporation pan data during 1951 to 1999 of 295 stations,the aridity index is calculated in this paper.According to the aridity index,the climatic regions in China are divided into three types:the arid zone,the semi-arid zone and the humid zone. Isoline 0.20 is the boundary between arid and semi-arid zones.Isoline 0.50 is the boundary between semi-arid and humid zones.The fluctuations of dry and wet climate boundaries are very substantial,have greatly regional difference,and have the features of the whole shifting along the same direction and of the opposite moving along the contrary direction over the past 50 years.The semi-arid zone is a transitional zone between humid and arid zones,a border belt of monsoon,and a susceptible zone of environmental evolution in China. In the period of the late 1960s to the early 1970s,remarkable change had occurred for dry and wet climate in China.It manifests significantly that climate is from wetter into drought in most regions of northern China.Moreover,drought has an increasing trend.The fluctuations of climatic boundaries and the dry and wet variations in climate have substantial inter-decadal features. The main factors affecting the dry and wet climate boundary fluctuations and the dry and wet variations of climate in China are East Asian summer monsoon,Indian Monsoon,plateau monsoon in the Tibetan Plateau,westerly circulation,and West Pacific subtropical high.The different types of circulations and the strong and weak combinations of these circulations result in the regional differences of dry and wet climate changes in China.Inter-decadal variations of the dry and wet climate boundary fluctuations and of the arid and humid climate result from the inter-decadal changes of East Asian summer monsoon,Indian Monsoon,plateau monsoon,westerly circulation, and West Pacific subtropical high.The anomalous general atmospheric circulation in the Northern Hemisphere during the late 1960s to the early 1970s is the causes of arid and humid climate remarkable change in China.展开更多
Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accum...Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.展开更多
For the purpose of crop planning and to carry out the agricultural practices,it is important to know the sequence of dry and wet periods.The present study was undertaken with the objectives to forecast dry and wet spe...For the purpose of crop planning and to carry out the agricultural practices,it is important to know the sequence of dry and wet periods.The present study was undertaken with the objectives to forecast dry and wet spell analysis using Markov chain model and also to find out the exact time of onset and termination of monsoon at study area for North Lakhimpur(Assam),India using weekly rainfall data for a period of 24 years.The results indicated that probability of occurrence of dry week is higher from week 1st to 14^(th) and also from week 41^(st) to 52^(nd).The range of probability of occurrence of dry week in these weeks varies from 41.67% to 100%.Probability of occurrence of wet week is higher from week 17^(th) to 40^(th).The range of probability of wet week in these weeks varies from 66.67% to 100%.Week 1^(st) to 4^(th) and 43^(rd) to 52^(nd) of the year remains under stress on an average,as there are 50% to 95.83% chances of occurrence of two consecutive dry weeks.The analysis showed that monsoon starts effectively from week 23^(rd)(4^(th) June to 10^(th) June)in North Lakhimpur.The week 25^(th)(18^(th) June to 24^(th) June)is ideal time for initiation of wet land preparation for growing short duration rice variety.Pre-monsoon effectively starts from week 14^(th)(2^(nd) April to 8^(th) April).On week 14^(th) sowing of summer maize(rain fed)may be done.Week 15^(th)(9^(th) April to 15^(th) April)is ideal time for initiation of wet land preparation for growing long duration rice variety.展开更多
To better analyse and understand the causes of Northwest China(NW China)arid climate formation,firstly the dry and wet standards were chosen and the yearly dry and wet grades on the north side of Qinghai-Xizang Platea...To better analyse and understand the causes of Northwest China(NW China)arid climate formation,firstly the dry and wet standards were chosen and the yearly dry and wet grades on the north side of Qinghai-Xizang Plateau(hereafter NSQXP)in summers were classified utilizing the rainfall data of five stations over the area in June-August of 1952—1990.Then the differences between the vertical motion over the Qinghai-Xizang Plateau(QXP)and NSQXP in dry and wet summers were comparatively analyzed using the ECMWF's gridded data of June—August of 1979 —1986.Finally the connection between the QXP surface thermal condition and the dry and wet summers on the NSQXP was discussed as well. The main results are the following:(1)the dry and wet standards taking the rainfall standard deviation as criterion are suitable for the arid climate area;(2)the QXP may be,to some extent. responsible for the environment background of Middle Asia,NW China and North China arid climate areas;(3)there are the striking differences between the dominant vertical motion over the QXP and NSQXP in the dry and wet summers of NSQXP:(4)the QXP surface thermal condition is.to a great extent,responsible for the year—to—year variation of NW China arid climate as well.展开更多
To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequenci...To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang.展开更多
The link between climate and war has long been a topic of great scientific and social interest.In this study,we investigate the influence of climate on warfare in China’s Hexi Corridor region since 241 A.D.Using the ...The link between climate and war has long been a topic of great scientific and social interest.In this study,we investigate the influence of climate on warfare in China’s Hexi Corridor region since 241 A.D.Using the superposed epoch analysis of tree-ring data and historical war data,we observe a notable correlation between interannual dry-wet variations and wars instigated by nomadic groups in the Hexi Corridor.However,this relationship is dynamic and influenced by the region’s relative unity.During periods in which the Hexi Corridor was ruled by multiple regimes,wars tended to follow dry climatic conditions,which may be due to the fact that unusual drought during these periods likely heightened competition for resources and land.Conversely,during times of regional unity,wars were more likely to occur when climatic conditions were wet because the expansion of rangelands and the accumulation of resources helped fuel the nomads’outward conquest.These findings underscore the complexity of the relationship between war and climate change.To gain a more comprehensive understanding of this relationship,continuous,high-resolution historical temperature and humidity datasets with broader and more uniform coverage are needed across multiple regions.In addition,collecting and examining disaggregated historical war data for regions with distinct characteristics is essential.展开更多
Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the charact...Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.展开更多
Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainf...Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainfall is important for effective planning among the different stakeholders in the weather and climate sectors. This study aimed at understanding how intra seasonal rainfall characteristics, especially Consecutive Dry Days (CDD) and Consecutive Wet Days (CWD), in the two major rainfall seasons will change under two future climate scenarios of RCP4.5 and RCP8.5 in Uganda, covering two future periods of 2021-2050 and 2051-2080. The results indicate a high likelihood of reduced consecutive rainfall days, especially over the Northeastern regions of the country, for both 2021-2050 and 2051-2080. However, the trends in the entire country for the two major rainfall seasons, March to May and September to November, are not significant. Nonetheless, the distribution of these days is important for most agricultural activities during different stages of crop growth. The consecutive dry days show a fairly increasing trend in the eastern part of the country, particularly in the second season of September to November. An increase in consecutive dry days implies more frequent dry spells in the midst of the growing season, potentially affecting some crops during critical growth stages.展开更多
The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system ...The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.展开更多
Investigations were carried out, on a low grade siliceous iron ore sample by magnetic separation, to establish its amenability for physical beneficiation. Mineralogical studies revealed that the sample consists of mag...Investigations were carried out, on a low grade siliceous iron ore sample by magnetic separation, to establish its amenability for physical beneficiation. Mineralogical studies revealed that the sample consists of magnetite, hematite and goethite as major opaque oxide minerals where as silicates as well as carbonates form the gangue minerals in the sample. Processes involving combination of classification, dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible. The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator. It was possible to obtain a magnetic concentrate of 67% Fe by recovering 90% of iron values at below 200 lm size.展开更多
Chloride ion critical content was studied under soaking and cycle of dry and wet conditions, with three electrochemical nondestructive measuring techniques, i e, half-cell potential, A C impedance, and time potential....Chloride ion critical content was studied under soaking and cycle of dry and wet conditions, with three electrochemical nondestructive measuring techniques, i e, half-cell potential, A C impedance, and time potential. The experimental results show that chloride ion critical content is primarily determined by the water cement ratio, while for the same concrete mixture the chloride ion critical content in soaking conditions is larger than that in a cycle of dry and wet conditions.展开更多
Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–...Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–2011.Further,the associated atmospheric circulation and SST anomalies(SSTAs)were explored to understand the mechanisms of dry-and wet-year cases based on an interannual time scale.The correlation,Morlet wavelet power spectrum,and composite analysis methods were employed.The results showed that the JFM standardized rainfall anomaly time series exhibited significant time scales of variability at interannual(2–8 years)and quasidecadal(8–12 years).During dry years,anomalous anticyclonic northeasterly flow originating from western tropical Indian and southeast trades from the Indian Ocean to the southeast were associated with subsiding dry air,which resulted in suppression of rainfall as observed.In the typical wet-year cases,meanwhile,anomalous westerlies from the tropical and southeast Atlantic were strengthened over the Congo basin,delivering more precipitation to the region.Significant correlation was exhibited over the western tropical and southeast Indian Ocean,as well as the southeast and tropical Atlantic Ocean.These SSTA patterns favored atmospheric general circulation anomalies that were closely related to JFM rainfall over Tanzania.展开更多
This study investigated the major ion composition and sources in wet and dry deposition samples collected over 15 months (December 2017 to February 2019) at four stations representing four different land use/cover typ...This study investigated the major ion composition and sources in wet and dry deposition samples collected over 15 months (December 2017 to February 2019) at four stations representing four different land use/cover types on the western side of Lake Kivu basin in D.R. Congo. The samples were collected every 13 days for dry deposition and two to three times per month for wet deposition. Samples were analyzed for major ionic components (Cl<sup>-, NO<sub>-</sub>3</sup>, SO<sub>2-</sub>4</sup>, Na<sup>+</sup>, K<sup>+</sup>, NH<sub>+</sub>4</sup>, Ca<sup>2+</sup>, CO<sub>2-</sub>3</sup>, HCO<sub>-</sub>3</sup> and Mg<sup>2+</sup>). Electrical conductivity and pH were analyzed immediately in the field while major ion measurements were in the laboratory. Results showed the pH of both the dry and the wet depositions were higher than what would have been expected based on equilibration with atmospheric CO<sub>2</sub> (pH > 5.6) at all four sites, with conductivity less than 50 μS/cm. The neutralization process in dry and wet atmospheric deposition is due to Ca<sup>2+</sup>, NH<sub>+</sub>4</sup>, HCO<sub>-</sub>3</sup> and CO<sub>2-</sub>3</sup>. The anion: cation ratio in dry deposition was close to 1 for Iko and Bukavu, and it was greater than 1.0 (1.1 - 1.2) for Lwiro and Goma in wet deposition. The dominant anions in wet deposition were SO<sub>2-</sub>4</sup> and NO<sub>-</sub>3</sup>, found around the rural area near cement factory and the urban area near active volcanoes, respectively. The most abundant cation was Na+ followed by K<sup>+</sup>. The enrichment factors and correlation analysis suggest that the main sources of Ca<sup>2+</sup>, Na<sup>+</sup> and Mg<sup>2+</sup> were disintegration of soil processes, aeolian suspension of soil and volcanic ash, biomass burning and the cement/lime factory around the Lake Kivu basin.展开更多
基金Supported by the Special Project for the Grass-roots Units of Shandong Meteorological Bureau(2023SDJC14).
文摘Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morlet wavelet analysis were used to analyze the change trend and temporal and spatial distribution characteristics of SPI index in the past 52 years.The results show that there were more normal years in Shandong Province,and the frequency reached 38.46%.There was severe drought in the 1980s and more wet years after 2003.SPI index showed an upward trend in spring,summer and winter but a weak arid trend in autumn.In addition,intense dry weather was more frequent in summer.Spatially,the climate was normal or humid in most areas of Shandong Province.The regions with more wet years were located in the central and northeast Shandong and the peninsula,while the climate was normal in the southwest and north of Shandong.The areas with more dry years were mainly located in the northwest of Shandong Province.There was mainly local and global drought in Shandong Province,and the arid area showed a decreasing trend.In the past 52 years,Shandong Province experienced quasi-4 times of alternation between dry and wet climate.The long period of 21 a was the first main period,and the climate would be still wet in Shandong Province in the future.In terms of mutation,the climate in Shandong Province became humid after 2003,and 2003 was the mutation point.After the abrupt change,the climate changed from gradually drying to wetting.
基金supported by the National Basic Research Program of China (2012CB955903,2012CB955304)the Special Fund for Public Welfare Industry(GYHY201106029,GYHY200806021)+2 种基金the National Natural Science Foundation of China (40830957)the China Meteorological Administration Special Program for Climatic Change(280200S011C00)the Drought Meteorology Science Research Program (IAM201111)
文摘This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, wind speed and sunshine duration observed on the plateau from 1961 to 2008. The temporal-spatial distribution, anomaly distribution and sub-regional temporal variations of the terrestrial surface dry and wet conditions were analyzed as well. The results showed a decreasing trend in the annual average surface humidity from the southeast to the northwest in the research anna. Over the period of 1961-2008, an aridification tendency appeared sharply in the central interior region of the Loess Plateau, and less sharply in the middle part of the region. The border region showed the weakest tendency ol; aridification. It is clear that aridification diffused in all directions from the interior region. The spatial anomaly distribution of the terrestrial surface dry and wet conditions on the Loess Plateau can be divided into three key areas: the southern, western and eastern regions. The terrestrial annual humidity index displayed a significantly descending trend and showed remarkable abrupt changes from wet to dry in the years 1967, 1977 and 1979. In the above mentioned three key areas for dry and wet conditions, the terrestrial annual humidity index exhibited a fluctuation period of 3-4 years, while in the southern region, a fluctuation period of 7-8 years existed at the same time.
基金The Knowledge Innovation Project of CAS NO. KZCX1-10-06
文摘Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.
文摘[Objective] The research aimed to analyze the evolution situation of dry and wet degree in Benxi area in recent 57 years.[Method] By using the annual,quarterly and monthly temperature and precipitation data in Benxi area during 1953-2009,the interdecadal variations of temperature,precipitation,dry and wet index were analyzed.[Result] The annual average temperature in Benxi area displayed the obvious increase trend,and the linear trend rate was 0.29 ℃/10 a.But the precipitation showed the obvious decrease trend,and the linear trend rate was-29.01 mm/10 a.The dry and wet index showed the decrease trend,and the linear trend rate was-33.61 mm/10 a,which closely related to the rise of temperature and the decrease of precipitation after the 1980s.[Conclusion] It showed the warming-drying development trend in Benxi area.
文摘To study the characteristics of atmospheric dry and wet deposition in the upper reaches of Baiyangdian,two sampling sites in Baoding City were monitored for 1 year from September 2018 to August 2019.The results showed that the dry and wet deposition fluxes of total nitrogen(TN)during the monitoring period were 6.87 and 6.46 kg/(hm^(2)·a),respectively.The ratio of wet to dry deposition of TN was approximately 1∶1,with wet deposition being dominated by ammonium nitrogen deposition.The dry and wet deposition fluxes of total phosphorus(TP)were 0.228 and 0.125 kg/(hm^(2)·a),and it was dominated by dry deposition.The average concentration of TN in wet deposition exceeded the standard threshold for eutrophic waters,and its ecological effects on the Baiyangdian basin should be concerned.Wet deposition fluxes of nitrogen and phosphorus had a significantly positive correlation with rainfall,while their deposition concentrations were negatively correlated with rainfall.The dry deposition of atmospheric nitrogen and phosphorus was influenced by the amount of dustfall and climatic factors such as rainfall,temperature,and humidity,which mainly occurred from April to August.
文摘<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div>
基金supported by the National Basic Research Program of China(Grant No.2013CB430206,2012CB955304)National Natural Science Foundation of China(Grant Nos.41075008,40830957,41275118)+2 种基金China Postdoctoral Science Special Foundation(Grant No.2013T60901)China Postdoctoral Science Foundation(Grant No.20110490854)the Ten Talents Program of Gansu Meteorology Bureau
文摘On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.
基金a grant from the National Natural Science Foundation of China (40301010)the Project of Knowledge Innovation of CAS (No.KZCX1-10-06)
文摘Based on yearly precipitation and Φ20 evaporation pan data during 1951 to 1999 of 295 stations,the aridity index is calculated in this paper.According to the aridity index,the climatic regions in China are divided into three types:the arid zone,the semi-arid zone and the humid zone. Isoline 0.20 is the boundary between arid and semi-arid zones.Isoline 0.50 is the boundary between semi-arid and humid zones.The fluctuations of dry and wet climate boundaries are very substantial,have greatly regional difference,and have the features of the whole shifting along the same direction and of the opposite moving along the contrary direction over the past 50 years.The semi-arid zone is a transitional zone between humid and arid zones,a border belt of monsoon,and a susceptible zone of environmental evolution in China. In the period of the late 1960s to the early 1970s,remarkable change had occurred for dry and wet climate in China.It manifests significantly that climate is from wetter into drought in most regions of northern China.Moreover,drought has an increasing trend.The fluctuations of climatic boundaries and the dry and wet variations in climate have substantial inter-decadal features. The main factors affecting the dry and wet climate boundary fluctuations and the dry and wet variations of climate in China are East Asian summer monsoon,Indian Monsoon,plateau monsoon in the Tibetan Plateau,westerly circulation,and West Pacific subtropical high.The different types of circulations and the strong and weak combinations of these circulations result in the regional differences of dry and wet climate changes in China.Inter-decadal variations of the dry and wet climate boundary fluctuations and of the arid and humid climate result from the inter-decadal changes of East Asian summer monsoon,Indian Monsoon,plateau monsoon,westerly circulation, and West Pacific subtropical high.The anomalous general atmospheric circulation in the Northern Hemisphere during the late 1960s to the early 1970s is the causes of arid and humid climate remarkable change in China.
基金the National Natural Science Foundation of China(No. 50575173).
文摘Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.
文摘For the purpose of crop planning and to carry out the agricultural practices,it is important to know the sequence of dry and wet periods.The present study was undertaken with the objectives to forecast dry and wet spell analysis using Markov chain model and also to find out the exact time of onset and termination of monsoon at study area for North Lakhimpur(Assam),India using weekly rainfall data for a period of 24 years.The results indicated that probability of occurrence of dry week is higher from week 1st to 14^(th) and also from week 41^(st) to 52^(nd).The range of probability of occurrence of dry week in these weeks varies from 41.67% to 100%.Probability of occurrence of wet week is higher from week 17^(th) to 40^(th).The range of probability of wet week in these weeks varies from 66.67% to 100%.Week 1^(st) to 4^(th) and 43^(rd) to 52^(nd) of the year remains under stress on an average,as there are 50% to 95.83% chances of occurrence of two consecutive dry weeks.The analysis showed that monsoon starts effectively from week 23^(rd)(4^(th) June to 10^(th) June)in North Lakhimpur.The week 25^(th)(18^(th) June to 24^(th) June)is ideal time for initiation of wet land preparation for growing short duration rice variety.Pre-monsoon effectively starts from week 14^(th)(2^(nd) April to 8^(th) April).On week 14^(th) sowing of summer maize(rain fed)may be done.Week 15^(th)(9^(th) April to 15^(th) April)is ideal time for initiation of wet land preparation for growing long duration rice variety.
基金This work was supported by both the National Natural Science Foundation of China under Grant 49605067 Prominent Young Scientist Project in West China of Chinese Academy of Sciences.
文摘To better analyse and understand the causes of Northwest China(NW China)arid climate formation,firstly the dry and wet standards were chosen and the yearly dry and wet grades on the north side of Qinghai-Xizang Plateau(hereafter NSQXP)in summers were classified utilizing the rainfall data of five stations over the area in June-August of 1952—1990.Then the differences between the vertical motion over the Qinghai-Xizang Plateau(QXP)and NSQXP in dry and wet summers were comparatively analyzed using the ECMWF's gridded data of June—August of 1979 —1986.Finally the connection between the QXP surface thermal condition and the dry and wet summers on the NSQXP was discussed as well. The main results are the following:(1)the dry and wet standards taking the rainfall standard deviation as criterion are suitable for the arid climate area;(2)the QXP may be,to some extent. responsible for the environment background of Middle Asia,NW China and North China arid climate areas;(3)there are the striking differences between the dominant vertical motion over the QXP and NSQXP in the dry and wet summers of NSQXP:(4)the QXP surface thermal condition is.to a great extent,responsible for the year—to—year variation of NW China arid climate as well.
基金National Key Research and Development Plan(2021YFD1900805)Funded Project of Basic Scientific Research Business of Public Welfare Research Institutes in Autonomous Region(KY2022127)。
文摘To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang.
基金supported by the Basic Science Center for Tibetan Plateau Earth System(Grant No.41988101)the National Natural Science Foundation of China(Grant No.41977392)+2 种基金the National Key R&D Program of China(Grant No.2019YFA0606602)the Natural Science Foundation of Gansu,China(Grant No.22JR5RA449)the Fundamental Research Funds for Central Universities(Grant No.22lzujbkydx036)。
文摘The link between climate and war has long been a topic of great scientific and social interest.In this study,we investigate the influence of climate on warfare in China’s Hexi Corridor region since 241 A.D.Using the superposed epoch analysis of tree-ring data and historical war data,we observe a notable correlation between interannual dry-wet variations and wars instigated by nomadic groups in the Hexi Corridor.However,this relationship is dynamic and influenced by the region’s relative unity.During periods in which the Hexi Corridor was ruled by multiple regimes,wars tended to follow dry climatic conditions,which may be due to the fact that unusual drought during these periods likely heightened competition for resources and land.Conversely,during times of regional unity,wars were more likely to occur when climatic conditions were wet because the expansion of rangelands and the accumulation of resources helped fuel the nomads’outward conquest.These findings underscore the complexity of the relationship between war and climate change.To gain a more comprehensive understanding of this relationship,continuous,high-resolution historical temperature and humidity datasets with broader and more uniform coverage are needed across multiple regions.In addition,collecting and examining disaggregated historical war data for regions with distinct characteristics is essential.
基金This research was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2022QN04003)the Central Government to Guide Local Scientific and Technological Development(2021ZY0031).
文摘Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.
文摘Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainfall is important for effective planning among the different stakeholders in the weather and climate sectors. This study aimed at understanding how intra seasonal rainfall characteristics, especially Consecutive Dry Days (CDD) and Consecutive Wet Days (CWD), in the two major rainfall seasons will change under two future climate scenarios of RCP4.5 and RCP8.5 in Uganda, covering two future periods of 2021-2050 and 2051-2080. The results indicate a high likelihood of reduced consecutive rainfall days, especially over the Northeastern regions of the country, for both 2021-2050 and 2051-2080. However, the trends in the entire country for the two major rainfall seasons, March to May and September to November, are not significant. Nonetheless, the distribution of these days is important for most agricultural activities during different stages of crop growth. The consecutive dry days show a fairly increasing trend in the eastern part of the country, particularly in the second season of September to November. An increase in consecutive dry days implies more frequent dry spells in the midst of the growing season, potentially affecting some crops during critical growth stages.
基金Project supported by the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. 035109)the National Natural Science Foundation of China (No. 30390080).
文摘The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.
文摘Investigations were carried out, on a low grade siliceous iron ore sample by magnetic separation, to establish its amenability for physical beneficiation. Mineralogical studies revealed that the sample consists of magnetite, hematite and goethite as major opaque oxide minerals where as silicates as well as carbonates form the gangue minerals in the sample. Processes involving combination of classification, dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible. The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator. It was possible to obtain a magnetic concentrate of 67% Fe by recovering 90% of iron values at below 200 lm size.
文摘Chloride ion critical content was studied under soaking and cycle of dry and wet conditions, with three electrochemical nondestructive measuring techniques, i e, half-cell potential, A C impedance, and time potential. The experimental results show that chloride ion critical content is primarily determined by the water cement ratio, while for the same concrete mixture the chloride ion critical content in soaking conditions is larger than that in a cycle of dry and wet conditions.
基金This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[XDA20060501]the National Natural Science Foundatin of China[91637208].
文摘Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–2011.Further,the associated atmospheric circulation and SST anomalies(SSTAs)were explored to understand the mechanisms of dry-and wet-year cases based on an interannual time scale.The correlation,Morlet wavelet power spectrum,and composite analysis methods were employed.The results showed that the JFM standardized rainfall anomaly time series exhibited significant time scales of variability at interannual(2–8 years)and quasidecadal(8–12 years).During dry years,anomalous anticyclonic northeasterly flow originating from western tropical Indian and southeast trades from the Indian Ocean to the southeast were associated with subsiding dry air,which resulted in suppression of rainfall as observed.In the typical wet-year cases,meanwhile,anomalous westerlies from the tropical and southeast Atlantic were strengthened over the Congo basin,delivering more precipitation to the region.Significant correlation was exhibited over the western tropical and southeast Indian Ocean,as well as the southeast and tropical Atlantic Ocean.These SSTA patterns favored atmospheric general circulation anomalies that were closely related to JFM rainfall over Tanzania.
文摘This study investigated the major ion composition and sources in wet and dry deposition samples collected over 15 months (December 2017 to February 2019) at four stations representing four different land use/cover types on the western side of Lake Kivu basin in D.R. Congo. The samples were collected every 13 days for dry deposition and two to three times per month for wet deposition. Samples were analyzed for major ionic components (Cl<sup>-, NO<sub>-</sub>3</sup>, SO<sub>2-</sub>4</sup>, Na<sup>+</sup>, K<sup>+</sup>, NH<sub>+</sub>4</sup>, Ca<sup>2+</sup>, CO<sub>2-</sub>3</sup>, HCO<sub>-</sub>3</sup> and Mg<sup>2+</sup>). Electrical conductivity and pH were analyzed immediately in the field while major ion measurements were in the laboratory. Results showed the pH of both the dry and the wet depositions were higher than what would have been expected based on equilibration with atmospheric CO<sub>2</sub> (pH > 5.6) at all four sites, with conductivity less than 50 μS/cm. The neutralization process in dry and wet atmospheric deposition is due to Ca<sup>2+</sup>, NH<sub>+</sub>4</sup>, HCO<sub>-</sub>3</sup> and CO<sub>2-</sub>3</sup>. The anion: cation ratio in dry deposition was close to 1 for Iko and Bukavu, and it was greater than 1.0 (1.1 - 1.2) for Lwiro and Goma in wet deposition. The dominant anions in wet deposition were SO<sub>2-</sub>4</sup> and NO<sub>-</sub>3</sup>, found around the rural area near cement factory and the urban area near active volcanoes, respectively. The most abundant cation was Na+ followed by K<sup>+</sup>. The enrichment factors and correlation analysis suggest that the main sources of Ca<sup>2+</sup>, Na<sup>+</sup> and Mg<sup>2+</sup> were disintegration of soil processes, aeolian suspension of soil and volcanic ash, biomass burning and the cement/lime factory around the Lake Kivu basin.