期刊文献+
共找到82,687篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of dry-wet cycles on the mechanical properties of sandstone with unloading-induced damage
1
作者 NAN Gan ZHANG Jiaming +2 位作者 LUO Yi WANG Xinlong HU Zhongyi 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3474-3486,共13页
Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as eng... Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as engineering excavations.Furthermore,this degradation is further exacerbated under periodic dry-wet environmental conditions.This study investigated the effects of dry-wet cycles and unloading on the mechanical properties of jointed fine sandstone using uniaxial and triaxial compression tests.These tests were performed on rock samples subjected to varying unloading degrees and different numbers of dry-wet cycles.The results demonstrate that with an increase in the unloading degree from 0%to 70%,there is a corresponding decrease in peak stress ranging from 10%to 33%.Additionally,the cohesion exhibits a reduction of approximately 20%to 25%,while the internal friction angle experiences a decline of about 3.5%to 6%.These findings emphasize a significant unloading effect.Moreover,the degree of peak stress degradation in unloading jointed fine sandstone diminishes with an increase in confining pressure,suggesting that confining pressure mitigates the deterioration caused by dry-wet cycles.Additionally,as the number of dry-wet cycles increases,there is a notable decline in the mechanical properties of the sandstone,evidencing significant dry-wet degradation.Utilizing the Drucker Prager criterion,this study establishes a strength criterion and fracture criterion,denoted as σ_(1)(m,n) and K_(T)^(Ⅱ)(m, n), to quantify the combined impacts of dry-wet cycles and unloading on jointed fine sandstone,which provides a comprehensive understanding of its mechanical behavior under such conditions. 展开更多
关键词 UNLOADING dry-wet cycle Jointed fine sandstone Strength criterion fracture criterion Mechanical properties
下载PDF
Effect of dry-wet cycles on dynamic properties and microstructures of sandstone:Experiments and modelling
2
作者 Hai Pu Qingyu Yi +3 位作者 Andrey P.Jivkov Zhengfu Bian Weiqiang Chen Jiangyu Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期655-679,共25页
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi... Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields. 展开更多
关键词 Underground pumped storage power plant dry-wet cycles Split Hopkinson pressure bar Macro and micro properties FEM-DEM coupling model Damage characterization
下载PDF
Exploring the mechanical behavior and microstructure of compacted loess subjected to dry-wet cycles and chemical contamination
3
作者 Yongpeng Nie Wankui Ni +1 位作者 Xiangfei Lü Wenxin Tuo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3673-3695,共23页
Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding m... Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition. 展开更多
关键词 Contaminated loess dry-wet cycles COMPRESSIBILITY Shear strength Microstructural evolution
下载PDF
Stability analysis of gravity anchor foundation of layered argillaceous sandstone under dry-wet cycles 被引量:1
4
作者 ZHENG Jing-cheng CHEN Wei +4 位作者 ZHENG Ke-ren GU Yu-peng WANG Fei HUANG Zhen LI Yun 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1118-1130,共13页
To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were co... To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were conducted in a suspension bridge project.Under dry-wet cycles,the deterioration law of the mechanical properties of argillaceous sandstone was identified in laboratory tests:the elastic modulus,cohesion and friction of the argillaceous sandstone deteriorated significantly at first few dry-wet cycles and then declined slowly after 10 cycles,ultimately these three mechanical parameters were reduced to about 1/3,1/3,2/3 of the initial value respectively.Moreover,numerical simulation was used to restore in-situ shear tests and a good agreement was obtained.Base on the results of in-situ and laboratory tests,the stability of the gravity anchor foundation under natural conditions and drywet cycles was calculated and its failure modes were analyzed.The results demonstrated that the dry-wet cycles caused uneven settlement of the anchor foundation,resulting in more serious stress concentration in the substrate.The dry-wet cycles remarkably reduced the stability coefficient of the anchor foundation,whose failure mode shifted from overturning failure under natural conditions to sliding failure.When there was weak interlayer in the rock layer,the anti-sliding stability of the anchor foundation was affected drastically. 展开更多
关键词 Gravity anchor foundation STABILITY In-situ tests dry-wet cycles Numerical simulation
下载PDF
The law of strength damage and deterioration of jointed sandstone after dry-wet cycles 被引量:1
5
作者 WANG Gui-lin ZHANG Tian-yu ZHANG Liang 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1170-1182,共13页
Under the periodic rise and fall of the water level in the Three Gorges Reservoir in China,the rock mass in the ebb and flow zone of the slope is always in a state of a dry-wet cycle.In order to explore the influence ... Under the periodic rise and fall of the water level in the Three Gorges Reservoir in China,the rock mass in the ebb and flow zone of the slope is always in a state of a dry-wet cycle.In order to explore the influence of dry-wet cycle on mechanical properties of jointed sandstone,the triaxial and uniaxial compression tests of dry-wet cycle of jointed sandstone were carried out.For the experiment,four groups of samples with different numbers of joints were set up,and the jointed rock samples were subjected to 20 dry-wet cycles.Using both the triaxial compression test and the Mohr-Coulomb(M-C)rock fracture criterion,the strength envelope of the sandstone samples was fitted,and their strength degradation was further analyzed and studied.The results show that:(1)The peak intensity and elastic modulus of the sandstone samples decrease with increased number of dry-wet cycles.(2)The total deterioration of mechanical properties of intact rock samples is bigger than that of jointed sandstone samples as the number of dry-wet cycles increases.(3)With the increase of confining pressure,the peak intensity of intact sandstone samples increases much more than that of jointed sandstone samples,which indicates that joints and their numbers have obvious influence.(4)Joints and their numbers play an important role in guiding the damage effects of sandstone samples,which weaken the damage caused by dry-wet cycles.Therefore,the envelope of the M-C strength criterion of intact sandstone samples moves more than that of jointed sandstone samples. 展开更多
关键词 Jointed sandstone dry-wet cycle Triaxial compression Strength damage Deterioration mechanism
下载PDF
Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack 被引量:1
6
作者 Wei Chen Weijie Shan +1 位作者 Yue Liang Frederic Skoczylas 《Fluid Dynamics & Materials Processing》 EI 2023年第3期679-696,共18页
This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and ana... This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and analyzed under different exposure conditions.At the same time,nitrogen adsorption(NAD),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques were used to analyze the corresponding variations in the microstructure and the corrosion products.The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.The pores fill with corrosion products,increasing the mortar specimen mass and tensile strength while reducing the permeability coefficient and pore size distribution.As corrosion proceeds,the crystallization pressure of the corrosion products increases,resulting in a 16%reduction in tensile strength from the initial value and a 2.6-factor increase in the permeability coefficient,indicating sensitivity to sulfate attack damage.Furthermore,the main corrosion products generated in the experiment are gypsum and ettringite.Application of osmotic pressure and extension of the immersion time can accelerate the erosion process. 展开更多
关键词 Cement mortar dry-wet cycles gas permeability tensile strength MICROSTRUCTURE
下载PDF
Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography 被引量:15
7
作者 Ran An Lingwei Kong +1 位作者 Xianwei Zhang Chengsheng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期851-860,共10页
Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to... Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results. 展开更多
关键词 Granite residual soil dry-wet cycle X-ray micro computed tomography(micro-CT) Three-dimensional(3D)pore distribution Seepage simulations PERMEABILITY
下载PDF
Performance of interface between TRC and existing concrete under a chloride dry-wet cycle environment 被引量:4
8
作者 LI Yao YIN Shi-ping LV Heng-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期876-890,共15页
Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining th... Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties. 展开更多
关键词 textile-reinforced concrete chloride dry-wet cycles double-sided shear average shear strength interface slip X-ray diffraction technology
下载PDF
Shot noise analysis on corrosion behavior of zinc alloy (ZnAl4Cul) under dry-wet cycles 被引量:3
9
作者 CHEN An-na CAO Fa-he +4 位作者 LIU Wen-juan ZHENG Li-yun ZHANG Zhao ZHANG Jian-qing CAO Chu-nan 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期228-240,共13页
The corrosion behaviors of zinc alloy (ZnAl4Cul) in 3.5% (mass fraction) NaCl, 7.3% (mass fraction) Na2SO4 and simulated acid rain solutions were investigated using electrochemical measurements. The potential no... The corrosion behaviors of zinc alloy (ZnAl4Cul) in 3.5% (mass fraction) NaCl, 7.3% (mass fraction) Na2SO4 and simulated acid rain solutions were investigated using electrochemical measurements. The potential noise during dry-wet cycle was monitored and analyzed by fast Fourier transform (FFT), fast wavelet transform (FWT), shot noise theory and stochastic theory. Cumulative probability curves of event frequency fn indicate that the corrosion events in the dry cycles are greater than those in the wet cycles. Uniform corrosion was observed in the NaCl solution compared with more localized corrosion in the Na2SO4 solution, which is evidenced by FWT and SEM. Conditional events generation rate r(t) for diffusion controlled reactions decreases with increasing the time. r(t) values for uniform corrosion and diffusion controlled process are the largest in the wet cycle in 3.5% NaCl solution. The values of r(t) for pitting corrosion in Na2SO4 solution are observed to become large during spraying periods, and r(t) for pitting corrosion has the largest value in the Na2SO4 solution. The intergranular corrosion of zinc is serious in simulated acid rain solution. 展开更多
关键词 electrochemical noise shot noise analysis dry-wet cycle zinc alloy
下载PDF
The Quantification of Micro-structural Damage of Weak Muddy Intercalation in Dry-wet Cycles Combining in-situ SEM and DIP 被引量:1
10
作者 HE Leping ZHONG Lin +3 位作者 HU Qijun GU Yucheng ZENG Junsen TANG Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1396-1399,共4页
In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were ana... In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased. 展开更多
关键词 dry-wet cycles weak muddy intercalation in-situ SEM digital image processing microstructural damage
下载PDF
Law of Water Content Change in Subgrade Soil Under Action of Dry-Wet Cycle 被引量:1
11
作者 ZHANG Qingsong JI Tianjian XIAO Lei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期69-75,共7页
Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil ... Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil water content variation under the action of dry-wet cycle through sensor readings. Thus,an indoor soil column model test system is designed,and the readings of the sensors are used to determine the changing law of moisture field in the subgrade soil. The sensor readings indicate that the water content gradually decreases along the height of the soil column,and the water in the upper part of the soil column continuously loses,while the water in the lower part migrates upward to supplement. With the increase of dry-wet cycle index,the water holding capacity of soil decreases,and the soil surface gradually cracks and tends to rupture. 展开更多
关键词 subgrade soil dry-wet cycle water content change soil column indoor test
下载PDF
Investigation of Sulfate Attack Resistance of Shotcrete under Dry-wet Cycles 被引量:1
12
作者 王家滨 牛荻涛 +1 位作者 MA Rui ZHANG Yongli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1329-1335,共7页
In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared... In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared with ordinary concrete by the same mixture, the difference of sulfate attack resistance of shotcrete was studied. The experimental results showed that, with dry-wet cycles increasing, the changes of loss rate of relative dynamic elastic modulus and mass loss rate of specimens included three stages: initial descent stage, stable stage, and rapid descent stage, respectively. However, the changes of mechanical properties first increased and then decreased. Furthermore, the corrosion products of shotcrete after sulfate attack were observed by using the method of XRD, thermal analysis, and SEM, respectively, and the failure mode of shotcrete turned from ettringite destruction to ettringite-gypsum comprehensive failure. Meanwhile, the contents of ettringite and gypsum increased with increasing dry-wet cycle. Simultaneously, the stratified powders drilled from shotcrete under 150's dry-wet cycle were analyzed for the mineral phase composition and thermal analysis. With the drywet cycle increasing, the content of ettringite first increased and then decreased and tended to stable. However, the determination of gypsum decreased gradually and even to 0 when the depth was more than 12 mm. 展开更多
关键词 tunnel engineering durability shotcrete sulfate attack dry-wet cycles
下载PDF
Creep damage properties of sandstone under dry-wet cycles 被引量:5
13
作者 WANG Xin-gang LIAN Bao-qin +2 位作者 WANG Jia-ding FENG Wen-kai GU Tian-Feng 《Journal of Mountain Science》 SCIE CSCD 2020年第12期3112-3122,共11页
Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycle... Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycles due to periodic water inundation and drainage may gradually accumulate creep deformation,resulting in rock structure’s damage or even geological hazards such as landslides.To fully investigate the effect of DW cycles on the creep damage properties of sandstone,triaxial creep tests were conducted on saturated sandstone with different DW cycles by using a triaxial rheometer apparatus.The experimental results show that both the instantaneous strain and the stabilized strain increase with the DW cycles.In addition,using the Burgers model,four kinds of functions including an exponentially decreasing function,a linearly decreasing function,a linearly increasing function and an exponentially increasing function were proposed to express the relationships between the shear modulus,viscoelastic parameters of the Burgers model and the deviatoric stress under different DW cycles.Through comparative analysis,it is found that the theoretical curves generated using proposed four kinds of functions are in good agreement with the experimental data.Furthermore,macromorphological and microstructural observations were performed on specimens after various triaxial rheological tests.For samples with small number of DW cycles,approximately X-shaped fracture surfaces were observed in shear failure zones,whereas several shear fractures including obvious axial and horizontal tensile cracks,and flaws were found for samples with relatively large DW cycles due to long-term propagation and evolution of micro-fissures and micro-pores.Furthermore,as the DW cycles increases,the variation in micro-structure of samples after creep failure was summarized into three stages,namely,a stage with good and dense structure,a stage with pore and fissure propagation,and a stage with extensive increase of pores,fissures and loose particles.It is concluded that the combination effect of permeation of water molecules through pores and fissures within sandstone,and the propagation of preexisting pores and fissures owing to the dissolution of mineral particles leads to further deterioration of the mechanical properties of sandstone as the number of DW cycles increases.This study provides a fundamental basis for evaluating the long-term stability of reservoir bank slopes under cyclic fluctuations of water level. 展开更多
关键词 Creep damage property SANDSTONE Drywet cycles Triaxial rheological test MICROSTRUCTURE
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system 被引量:2
14
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand 被引量:3
15
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
Durable K-ion batteries with 100% capacity retention up to 40,000 cycles 被引量:1
16
作者 Xianlu Lu Zhao Liang +6 位作者 Zhi Fang Dongdong Zhang Yapeng Zheng Qiao Liu Dingfa Fu Jie Teng Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期201-212,共12页
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce... Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications. 展开更多
关键词 carbon nanosheet cycle stability K-ion batteries rate performance specific capacity
下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:1
17
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis Multi-objective optimization Decision-making methods
下载PDF
Involvement of the ABA-and H_(2)O_(2)-Mediated Ascorbate-Glutathione Cycle in the Drought Stress Responses of Wheat Roots 被引量:1
18
作者 Mengyuan Li Zhongye Gao +2 位作者 Lina Jiang Leishan Chen Jianhui Ma 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期329-342,共14页
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th... Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities. 展开更多
关键词 ABA H_(2)O_(2) AsA-GSH cycle drought stress wheat roots
下载PDF
有向图上基于层次树索引的最大cycle truss社区搜索
19
作者 宗传玉 张纯鹤 夏秀峰 《计算机应用》 CSCD 北大核心 2024年第1期190-198,共9页
社区搜索旨在从信息网络中找出包含用户查询顶点的高内聚连通子图,cycle truss是一种基于cycle三角形的社区搜索模型,而现有的基于索引的cycle truss社区搜索方法存在索引空间大、搜索效率低、社区内聚性低的缺点。为了解决这一问题,提... 社区搜索旨在从信息网络中找出包含用户查询顶点的高内聚连通子图,cycle truss是一种基于cycle三角形的社区搜索模型,而现有的基于索引的cycle truss社区搜索方法存在索引空间大、搜索效率低、社区内聚性低的缺点。为了解决这一问题,提出一种基于层次树索引的最大cycle truss社区搜索方法。首先,提出了k-cycle truss分解算法,并引入了两个重要的概念:cycle三角连通与k-层次等价。基于k-层次等价设计了层次树索引TreeCIndex与表结构索引SuperTable,在此基础上,并基于这两个新的索引,提出了两个高效的cycle truss社区搜索算法。在4个真实数据集上与已有的基于TrussIndex与EquiTruss的社区搜索算法进行了比较,实验结果表明,TreeCIndex与SuperTable比TrussIndex与EquiTruss节省至少41.5%的空间,索引构建的时间节省8.2%至98.3%,且搜索最大cycle truss社区的效率分别高出了一个和两个数量级。 展开更多
关键词 有向图 社区搜索 cycle truss cycle三角形 层次等价 层次树索引
下载PDF
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
20
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 Refrigeration cycle Power cycle System Performance Transcritical CO2 cycles Working Fluid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部