In this paper, the resonant frequency of a dual\|mode dielectric resonator is calculated using a finite difference time\|domain method. A new type of bandpass filter is designed with the calculated coupling coefficien...In this paper, the resonant frequency of a dual\|mode dielectric resonator is calculated using a finite difference time\|domain method. A new type of bandpass filter is designed with the calculated coupling coefficient. The filter designed in this paper has reached the design goal, verified by simulation with Ansoft HFSS.展开更多
The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonli...The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonlinear systems is used to compute the terminal regions and terminal control laws with some free-parameters in the dual-mode NMPC framework.The parameters of the terminal controller are selected offline to estimate the terminal region as large as possible;and the parameters are optimized online to gain optimality of the terminal controller with respect to given cost functions.Then a dual-mode NMPC algorithm with varying time-horizon is formulated for the constrained system.Recursive feasibility and closed-loop stability of this NMPC are established.The example of a spring-cart is used to demonstrate the advantages of the presented scheme by comparing to the dual-mode NMPC via the linear quadratic regulator(LQR) method.展开更多
Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mec...Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mechanical variable transmission system is considered one of avilable workarounds.It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams.With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train,four kinds of dual-mode electro-mechanical transmission system scheme are designed.And the velocity,torque and power characteristics of one of the programs are analyzed.The magnitude of the electric split-flow power is an important factor which influences the system performance,so in the parameters matching design,it needs to reduce the power needs under the first mode of the motor.The motor,output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set.The analysis method is to provide a reference for hybrid vehicles' design.As the involved rotational speed and torque relationships are the natural contact of every part of transmission system,a theory basis of system program and performance analysis is provided.展开更多
A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate(Au NR@-PAA/Ca P) yolk–shell nanoparticles(NPs) composed with a PAA/Ca P shell and an Au NR yolk is reported. The asobtained Au NR@PAA/Ca ...A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate(Au NR@-PAA/Ca P) yolk–shell nanoparticles(NPs) composed with a PAA/Ca P shell and an Au NR yolk is reported. The asobtained Au NR@PAA/Ca P yolk–shell NPs possess ultrahigh doxorubicin(DOX) loading capability(1 mg DOX/mg NPs), superior photothermal conversion property(26%)and p H/near-infrared(NIR) dual-responsive drug delivery performance. The released DOX continuously increased due to the damage of the Ca P shell at low p H values. When the DOX-loaded Au NR@PAA/Ca P yolk–shell NPs wereexposed to NIR irradiation, a burst-like drug release occurs owing to the heat produced by the Au NRs. Furthermore,Au NR@PAA/Ca P yolk–shell NPs are successfully employed for synergic dual-mode X-ray computed tomography/photoacoustic imaging and chemo-photothermal cancer therapy. Therefore, this work brings new insights for the synthesis of multifunctional nanomaterials and extends theranostic applications.展开更多
A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated ...A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.展开更多
This paper investigates a mobile telecommunications system that supports both ad hoc and infrastructure mode operations. Based on analytic and simulation models, our study investigates how base station (BS) and ad hoc...This paper investigates a mobile telecommunications system that supports both ad hoc and infrastructure mode operations. Based on analytic and simulation models, our study investigates how base station (BS) and ad hoc channel capacity, and the mobility and locality of mobile stations affect the performance of a dual mode system. We show that a dual mode system can significantly outperform a single mode (infrastructure) system when the degree of locality is high. Furthermore, a dual mode system can support much faster mobile users with less BS channels in comparison to an infrastructure mode system. Our study quantitatively identifies the threshold value for the number of ad hoc channels such that beyond this threshold, increasing ad hoc channel capacity will not improve the performance of a dual mode system. Keywords Ad-hoc - infrastructure - dual mode system Yi-Hung Chen received B.S. degree in 2001 and M.S. degree in 2003 of Computer Science and Information Engineering from National Chiao Tung University, HsinChu, Taiwan. He is an engineer of QUALCOMM CDMA technologies Taiwan.His research interests include wireless communication and ad-hoc networking.Hui-Nien Hung received the B.S. degree in mathematics from the National Taiwan University, Taipei, Taiwan, in 1989, the M.S. in mathematics degree from National Tsin-Hua University, Hsinchu, Taiwan, in 1991, and the Ph.D. degree in statistics from the University of Chicago, Chicago, IL, in 1996. He is a Professor at the Institute of Statistics, National Chiao Tung University, Taiwan.His current research interests include applied probability, financial calculus, bioinformatics, statistical inference, statistical computing, and industrial statistics. Yi-Bing Lin (M’96-SM’96-F’04) is Chair Professor and Vice President of Research and Development, National Chiao Tung University.His current research interests include wireless communications and mobile computing Dr. Lin has published over 190 journal articles and more than 200 conference papers. His current research interests include wireless communications and mobile computing Dr. Lin has published over 190 journal articles and more than 200 conference papers. Lin is coauthor of the book Wireless and Mobile Network Architecture (with Imrich Chlamtac; published by John Wiley & Sons). Lin is an IEEE Fellow, an ACM Fellow, an AAAS Fellow, and an IEE Fellow.展开更多
AIM: To experimentally investigate the acoustical behavior of different dual-mode nanosized contrast agents(NPCAs) for echographic medical imaging at low ultrasound(US) frequency. METHODS: We synthesized three differe...AIM: To experimentally investigate the acoustical behavior of different dual-mode nanosized contrast agents(NPCAs) for echographic medical imaging at low ultrasound(US) frequency. METHODS: We synthesized three different nanosized structures:(1) Pure silica nanospheres(SiNSs);(2) FePt-iron oxide(FePt-IO)-coated SiNSs; and(3) IOcoated SiNSs, employing three different diameter of SiNS-core(160, 330 and 660 nm). Tissue mimicking phantoms made of agarose gel solution containing 5 mg of different NPCAs in 2 mL-Eppendorf tubes, were insonified by a commercial echographic system at three different low US pulse values(2.5, 3.5 and 4.5 MHz). The raw radiofrequency signal, backscattered from each considered NPCA containing sample, has been processed in order to calculate the US average backscatter intensity and compare the acoustic behavior of the different NPCA types. RESULTS: The highest US contrast was exhibited by pure SiNSs; FePt-IO-coated SiNSs acoustical behavior followed a similar trend of pure SiNSs with a slight difference in terms of brightness values. The acoustic response of the examined NPCAs resulted function of both SiNS diameter and US frequency. Specifically, higher US frequencies determined higher value of the backscatter for a given SiNS diameter. Frequencydependent enhancement was marked for pure SiNSs and became less remarkable for FePt-IO-coated SiNSs, whereas IO-coated SiNSs resulted almost unaffected by such frequency variations. Pure and FePt-IO-coated SiNSs evidenced an image backscatter increasing with the diameter up to 330 nm. Conversely, among the types of NPCA tested, IO-coated SiNSs showed the lowest acoustical response for each synthesized diameter and employed US frequency, although a diameter-dependent raising trend was evidenced. CONCLUSION: The US characterization of magnetically covered SiNS shows that FePt-IO, rather than IO, was the best magnetic coating for realizing NPCAs suitable for dual mode imaging of deep organs, combining US and magnetic resonance imaging.展开更多
Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on E...Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.展开更多
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a ker...A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a kerosene-fueled parameterized dual-mode scramjet at a cru- cial flight Mach number of 6 were investigated by using a modified quasi-one-dimensional method and simulated annealing strategy. Engine structure and heat release distrib- utions, affecting the engine thrust, were chosen as analytical parameters for varied inlet conditions (isolator entrance Mach number: 1.5-3.5). Results show that different opti- mal heat release distributions and structural conditions can be obtained at five different inlet conditions. The highest net thrust of the parameterized dual-mode engine can be achieved by a subsonic combustion mode at an isolator entrance Mach number of 2.5. Additionally, the effects of heat release and scramjet structure on net thrust have been discussed. The present results and the developed analytical method can provide guidance for the design and optimization of high-performance dual-mode scramjets.展开更多
Supersonic combustion of aviation kerosene is investigated under the flight conditions of Mach number 5 and fuel-air equivalence ratio 0.551.The trajectories of the fuel droplets and the heat/mass transfer between the...Supersonic combustion of aviation kerosene is investigated under the flight conditions of Mach number 5 and fuel-air equivalence ratio 0.551.The trajectories of the fuel droplets and the heat/mass transfer between them are simulated by means of discrete phase model(DPM).The k-ω model is chosen for turbulence closure and the non-premixed probability density function(PDF)approach is used to calculate the turbulence-chemistry interaction.The calculated wall static pressure and the total pressure loss coefficient are very close to the experiment results.The strut and cavity devices significantly increase the combustion efficiency.展开更多
A class of new planar dual-mode filters without coupling gaps is proposed. The proposed structures use a single patch wiuhout coupling gaps. Attenuation poles can be implemented on either side of the passband by chang...A class of new planar dual-mode filters without coupling gaps is proposed. The proposed structures use a single patch wiuhout coupling gaps. Attenuation poles can be implemented on either side of the passband by changing the locations of two feed lines. By cutting two corners in the patch, two attenuation poles on both sides of passband are implemented. A novel dual-mode elliptic-function bandpass filter structure without coupling gaps is also proposed. These new filters can provide a low insertion loss and reduce uncertainty in fabrication owing to the absence of coupling gaps.展开更多
The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic li...The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic line of force and some valuable results of the optimal magnetizing field are given.The theoretical cal-culations are in good agreement with the experimental results.展开更多
This paper presents a planar microstrip wideband dual mode Band-Pass Filter(BPF) from 2 GHz to 3.4 GHz with a notched band at 2.62 GHz.The dual mode band-pass filter consists of a ring resonator with two quarter-wavel...This paper presents a planar microstrip wideband dual mode Band-Pass Filter(BPF) from 2 GHz to 3.4 GHz with a notched band at 2.62 GHz.The dual mode band-pass filter consists of a ring resonator with two quarter-wavelength open-circuited stubs at =90o and =0o,respectively.A square perturbation stub has been put at the corner of the ring resonator to increase the narrow stopbands and improve the performance of selectivity.By using a parallel-coupled feed line,a narrow notched band is introduced at the required frequency and its Fractional BandWidth(FBW) is about 5%.The proposed filter has a narrow notched band and a wide pass-band with a sharp cutoff frequency characteristic,the attenuation rate for the sharp cutoff frequency responses is 297.17 dB/GHz(cal-culated from 1.959 GHz with-34.43 dB to 2.065 GHz with-2.93 dB) and 228.10 dB/GHz(calculated from 3.395 GHz with-2.873 dB to 3.507 GHz with-28.42 dB).This filter has the advantages of good insertion loss in both operating bands and two rejections of greater than 16 dB in the range of 1.59 GHz to 1.99 GHz and 3.49 GHz to 3.98 GHz.Having been presented in this article,the measurement results agree well with the simulation results,which validates our idea.展开更多
A compact narrowband non-degenerate dual-mode microstrip filter with square shape cuts is presented. The structure is developed by loading the conventional non-degenerate dual-mode resonator by open circuit stubs at t...A compact narrowband non-degenerate dual-mode microstrip filter with square shape cuts is presented. The structure is developed by loading the conventional non-degenerate dual-mode resonator by open circuit stubs at two opposite corners. The filter bandwidth is controlled by only decreasing the higher cutoff frequency of the conventional type. With Square shape cuts, return loss is improved. A 20% fractional bandwidth filter is designed and implemented on FR4 material with 4.4 dielectric constant and 1.6 mm thickness at center frequency of 1.5 GHz with passband of 1.3 GHz to 1.6 GHz. Analysis has been achieved using the IE3D simulator. Experimental results do agree with simulations.展开更多
<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a m...<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks. </div>展开更多
The nonlinear normal modes (NNMs) associated with integrnal resonance can be classified into two kinds: uncoupled and coupled. The bifurcation problem of the coupled NNM of system with 1 : 2 : 5 dual internal resonanc...The nonlinear normal modes (NNMs) associated with integrnal resonance can be classified into two kinds: uncoupled and coupled. The bifurcation problem of the coupled NNM of system with 1 : 2 : 5 dual internal resonance is in two variables. The singular analysis of it is presented after separating the two variables by taking advantage of Maple algebra, and some new bifurcation patterns are found. Different from the NNMs of systems with single internal resonance, the number of the NNMs of systems with dual internal resonance may be more or less than the number of the degrees of freedom. At last, it is pointed out that bifurcation problems in two variables can be conveniently solved by separating variables as well as using coupling equations.展开更多
文摘In this paper, the resonant frequency of a dual\|mode dielectric resonator is calculated using a finite difference time\|domain method. A new type of bandpass filter is designed with the calculated coupling coefficient. The filter designed in this paper has reached the design goal, verified by simulation with Ansoft HFSS.
基金supported by the National Natural Science Foundation of China(613741 11)Zhejiang Provincial Natural Science Foundation of China(LR17F030004)
文摘The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonlinear systems is used to compute the terminal regions and terminal control laws with some free-parameters in the dual-mode NMPC framework.The parameters of the terminal controller are selected offline to estimate the terminal region as large as possible;and the parameters are optimized online to gain optimality of the terminal controller with respect to given cost functions.Then a dual-mode NMPC algorithm with varying time-horizon is formulated for the constrained system.Recursive feasibility and closed-loop stability of this NMPC are established.The example of a spring-cart is used to demonstrate the advantages of the presented scheme by comparing to the dual-mode NMPC via the linear quadratic regulator(LQR) method.
基金supported by Foundation of National Key Lab of Vehicular Transmission of China
文摘Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mechanical variable transmission system is considered one of avilable workarounds.It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams.With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train,four kinds of dual-mode electro-mechanical transmission system scheme are designed.And the velocity,torque and power characteristics of one of the programs are analyzed.The magnitude of the electric split-flow power is an important factor which influences the system performance,so in the parameters matching design,it needs to reduce the power needs under the first mode of the motor.The motor,output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set.The analysis method is to provide a reference for hybrid vehicles' design.As the involved rotational speed and torque relationships are the natural contact of every part of transmission system,a theory basis of system program and performance analysis is provided.
基金the National Natural Science Foundation of China(Grant Nos.21573040 and 21603029)the Natural Science Foundation and Science and Technology Development Planning of Jilin Province(20150204086GX and20170520148JH)+3 种基金the Fundamental Research Funds for the Central Universities(2412016KJ007 and 2412016KJ020)the China Postdoctoral Science Foundation(2016M600224)the Jilin Provincial Research Foundation for Basic Research(20160519012JH)Jilin Provincial Key Laboratory of Advanced Energy Materials(Northeast Normal University)
文摘A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate(Au NR@-PAA/Ca P) yolk–shell nanoparticles(NPs) composed with a PAA/Ca P shell and an Au NR yolk is reported. The asobtained Au NR@PAA/Ca P yolk–shell NPs possess ultrahigh doxorubicin(DOX) loading capability(1 mg DOX/mg NPs), superior photothermal conversion property(26%)and p H/near-infrared(NIR) dual-responsive drug delivery performance. The released DOX continuously increased due to the damage of the Ca P shell at low p H values. When the DOX-loaded Au NR@PAA/Ca P yolk–shell NPs wereexposed to NIR irradiation, a burst-like drug release occurs owing to the heat produced by the Au NRs. Furthermore,Au NR@PAA/Ca P yolk–shell NPs are successfully employed for synergic dual-mode X-ray computed tomography/photoacoustic imaging and chemo-photothermal cancer therapy. Therefore, this work brings new insights for the synthesis of multifunctional nanomaterials and extends theranostic applications.
基金This project is supported by National Natural Science Foundation of China (No.50275053) and Provincial Natural Science Fundation of Guangdong (No.020857).
文摘A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.
文摘This paper investigates a mobile telecommunications system that supports both ad hoc and infrastructure mode operations. Based on analytic and simulation models, our study investigates how base station (BS) and ad hoc channel capacity, and the mobility and locality of mobile stations affect the performance of a dual mode system. We show that a dual mode system can significantly outperform a single mode (infrastructure) system when the degree of locality is high. Furthermore, a dual mode system can support much faster mobile users with less BS channels in comparison to an infrastructure mode system. Our study quantitatively identifies the threshold value for the number of ad hoc channels such that beyond this threshold, increasing ad hoc channel capacity will not improve the performance of a dual mode system. Keywords Ad-hoc - infrastructure - dual mode system Yi-Hung Chen received B.S. degree in 2001 and M.S. degree in 2003 of Computer Science and Information Engineering from National Chiao Tung University, HsinChu, Taiwan. He is an engineer of QUALCOMM CDMA technologies Taiwan.His research interests include wireless communication and ad-hoc networking.Hui-Nien Hung received the B.S. degree in mathematics from the National Taiwan University, Taipei, Taiwan, in 1989, the M.S. in mathematics degree from National Tsin-Hua University, Hsinchu, Taiwan, in 1991, and the Ph.D. degree in statistics from the University of Chicago, Chicago, IL, in 1996. He is a Professor at the Institute of Statistics, National Chiao Tung University, Taiwan.His current research interests include applied probability, financial calculus, bioinformatics, statistical inference, statistical computing, and industrial statistics. Yi-Bing Lin (M’96-SM’96-F’04) is Chair Professor and Vice President of Research and Development, National Chiao Tung University.His current research interests include wireless communications and mobile computing Dr. Lin has published over 190 journal articles and more than 200 conference papers. His current research interests include wireless communications and mobile computing Dr. Lin has published over 190 journal articles and more than 200 conference papers. Lin is coauthor of the book Wireless and Mobile Network Architecture (with Imrich Chlamtac; published by John Wiley & Sons). Lin is an IEEE Fellow, an ACM Fellow, an AAAS Fellow, and an IEE Fellow.
基金Supported by Italian Ministry of Instruction and Research,No.DM18604-Bando Laboratori-DD MIUR 14.5.2005 n.602/Ric/2005FESR PO Apulia Region 2007-2013-Action 1.2.4,No.3Q5AX31the Progetto Bandiera NANOMAX ENCODER
文摘AIM: To experimentally investigate the acoustical behavior of different dual-mode nanosized contrast agents(NPCAs) for echographic medical imaging at low ultrasound(US) frequency. METHODS: We synthesized three different nanosized structures:(1) Pure silica nanospheres(SiNSs);(2) FePt-iron oxide(FePt-IO)-coated SiNSs; and(3) IOcoated SiNSs, employing three different diameter of SiNS-core(160, 330 and 660 nm). Tissue mimicking phantoms made of agarose gel solution containing 5 mg of different NPCAs in 2 mL-Eppendorf tubes, were insonified by a commercial echographic system at three different low US pulse values(2.5, 3.5 and 4.5 MHz). The raw radiofrequency signal, backscattered from each considered NPCA containing sample, has been processed in order to calculate the US average backscatter intensity and compare the acoustic behavior of the different NPCA types. RESULTS: The highest US contrast was exhibited by pure SiNSs; FePt-IO-coated SiNSs acoustical behavior followed a similar trend of pure SiNSs with a slight difference in terms of brightness values. The acoustic response of the examined NPCAs resulted function of both SiNS diameter and US frequency. Specifically, higher US frequencies determined higher value of the backscatter for a given SiNS diameter. Frequencydependent enhancement was marked for pure SiNSs and became less remarkable for FePt-IO-coated SiNSs, whereas IO-coated SiNSs resulted almost unaffected by such frequency variations. Pure and FePt-IO-coated SiNSs evidenced an image backscatter increasing with the diameter up to 330 nm. Conversely, among the types of NPCA tested, IO-coated SiNSs showed the lowest acoustical response for each synthesized diameter and employed US frequency, although a diameter-dependent raising trend was evidenced. CONCLUSION: The US characterization of magnetically covered SiNS shows that FePt-IO, rather than IO, was the best magnetic coating for realizing NPCAs suitable for dual mode imaging of deep organs, combining US and magnetic resonance imaging.
基金Supported by Doctoral Fund of Ministry of Education of China(20101101110012)the National Natural Science Foundationof China(51175040)
文摘Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
基金supported by the National Natural Science Foundation of China(Grant 11002148)
文摘A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a kerosene-fueled parameterized dual-mode scramjet at a cru- cial flight Mach number of 6 were investigated by using a modified quasi-one-dimensional method and simulated annealing strategy. Engine structure and heat release distrib- utions, affecting the engine thrust, were chosen as analytical parameters for varied inlet conditions (isolator entrance Mach number: 1.5-3.5). Results show that different opti- mal heat release distributions and structural conditions can be obtained at five different inlet conditions. The highest net thrust of the parameterized dual-mode engine can be achieved by a subsonic combustion mode at an isolator entrance Mach number of 2.5. Additionally, the effects of heat release and scramjet structure on net thrust have been discussed. The present results and the developed analytical method can provide guidance for the design and optimization of high-performance dual-mode scramjets.
基金Sponsored by the National Natural Science Foundation of China(10702064)
文摘Supersonic combustion of aviation kerosene is investigated under the flight conditions of Mach number 5 and fuel-air equivalence ratio 0.551.The trajectories of the fuel droplets and the heat/mass transfer between them are simulated by means of discrete phase model(DPM).The k-ω model is chosen for turbulence closure and the non-premixed probability density function(PDF)approach is used to calculate the turbulence-chemistry interaction.The calculated wall static pressure and the total pressure loss coefficient are very close to the experiment results.The strut and cavity devices significantly increase the combustion efficiency.
文摘A class of new planar dual-mode filters without coupling gaps is proposed. The proposed structures use a single patch wiuhout coupling gaps. Attenuation poles can be implemented on either side of the passband by changing the locations of two feed lines. By cutting two corners in the patch, two attenuation poles on both sides of passband are implemented. A novel dual-mode elliptic-function bandpass filter structure without coupling gaps is also proposed. These new filters can provide a low insertion loss and reduce uncertainty in fabrication owing to the absence of coupling gaps.
文摘The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic line of force and some valuable results of the optimal magnetizing field are given.The theoretical cal-culations are in good agreement with the experimental results.
基金Supported by the National Natural Science Foundation of China (No. 51007040)
文摘This paper presents a planar microstrip wideband dual mode Band-Pass Filter(BPF) from 2 GHz to 3.4 GHz with a notched band at 2.62 GHz.The dual mode band-pass filter consists of a ring resonator with two quarter-wavelength open-circuited stubs at =90o and =0o,respectively.A square perturbation stub has been put at the corner of the ring resonator to increase the narrow stopbands and improve the performance of selectivity.By using a parallel-coupled feed line,a narrow notched band is introduced at the required frequency and its Fractional BandWidth(FBW) is about 5%.The proposed filter has a narrow notched band and a wide pass-band with a sharp cutoff frequency characteristic,the attenuation rate for the sharp cutoff frequency responses is 297.17 dB/GHz(cal-culated from 1.959 GHz with-34.43 dB to 2.065 GHz with-2.93 dB) and 228.10 dB/GHz(calculated from 3.395 GHz with-2.873 dB to 3.507 GHz with-28.42 dB).This filter has the advantages of good insertion loss in both operating bands and two rejections of greater than 16 dB in the range of 1.59 GHz to 1.99 GHz and 3.49 GHz to 3.98 GHz.Having been presented in this article,the measurement results agree well with the simulation results,which validates our idea.
文摘A compact narrowband non-degenerate dual-mode microstrip filter with square shape cuts is presented. The structure is developed by loading the conventional non-degenerate dual-mode resonator by open circuit stubs at two opposite corners. The filter bandwidth is controlled by only decreasing the higher cutoff frequency of the conventional type. With Square shape cuts, return loss is improved. A 20% fractional bandwidth filter is designed and implemented on FR4 material with 4.4 dielectric constant and 1.6 mm thickness at center frequency of 1.5 GHz with passband of 1.3 GHz to 1.6 GHz. Analysis has been achieved using the IE3D simulator. Experimental results do agree with simulations.
文摘<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks. </div>
文摘The nonlinear normal modes (NNMs) associated with integrnal resonance can be classified into two kinds: uncoupled and coupled. The bifurcation problem of the coupled NNM of system with 1 : 2 : 5 dual internal resonance is in two variables. The singular analysis of it is presented after separating the two variables by taking advantage of Maple algebra, and some new bifurcation patterns are found. Different from the NNMs of systems with single internal resonance, the number of the NNMs of systems with dual internal resonance may be more or less than the number of the degrees of freedom. At last, it is pointed out that bifurcation problems in two variables can be conveniently solved by separating variables as well as using coupling equations.