To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories...To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories was developed. Both heat transfer and flux distribution characteristics of the nozzle sprays on the slab were considered, and the complicated boundary conditions, such as spray cooling, natural convection, thermal radiation as well as contact cooling of individual rolls were involved in the model. By using the calibrated caster dependent model factors, the calculated temperature and shell thickness accorded well with the measured. Furthermore, a dynamic secondary water cooling control system was also developed on the basis of a two-dimensional transient heat transfer model (named "online model") and incremental PID control algorithm to reduce slab surface temperature fluctuation in unsteady state. Compared with the traditional spray table control method, the present online model and dynamic PID control demonstrate a higher capability and flexibility to adjust cooling water flowrate and reduce slab surface temperature fluctuation when the casting speed is changed.展开更多
It is a challenge to verify integrity of dynamic control flows due to their dynamic and volatile nature. To meet the challenge, existing solutions usually implant an "attachment" in each control transfer. However, t...It is a challenge to verify integrity of dynamic control flows due to their dynamic and volatile nature. To meet the challenge, existing solutions usually implant an "attachment" in each control transfer. However, the attachment introduces additional cost except performance penalty. For example, the attachment must be unique or restrictedly modified. In this paper, we propose a novel approach to detect integrity of dynamic control flows by counting executed branch instructions without involving any attachment. Our solution is based on the following observation. If a control flow is compromised, the number of executed branch instructions will be abnormally increased. The cause is that intruders usually hijack control flows for malicious execution which absolutely introduces additional branch instructions. Inspired by the above observation, in this paper, we devise a novel system named DCFI- Checker, which detect integrity corruption of dynamic control flows with the support of Performance Monitoring Counter (PMC). We have developed a proof-of-concept prototype system of DCFI-Checker on Linux fedora 5. Our experiments with existing kemel rootkits and buffer overflow attack show that DCFI- Checker is effective to detect compromised dynamic control transfer, and performance evaluations indicate that performance penaltyinduced by DCFI-Checker is acceptable.展开更多
Dynamic controls of pressure-swing distillation with an intermediate connection(PSDIC) process of ethyl acetate and ethanol separation were investigated.The double temperature/composition cascade control structure can...Dynamic controls of pressure-swing distillation with an intermediate connection(PSDIC) process of ethyl acetate and ethanol separation were investigated.The double temperature/composition cascade control structure can perfectly implement effective control when ±20% feed disturbances were introduced.This control structure did not require the control of the flowrate of the side stream.The dynamic controllability of PSDIC with partial heat integration(PHIPSDIC) was also explored.The improved control structure can effectively control ±20% feed disturbances.However,in industrial production,simple controller,sensitive and easy to operate,is the optimal target.To avoid the use of component controllers or complex control structure,the original product purities could be maintained using the basic control structure for the PSDIC process if the product purities in steady state were properly increased,albeit by incurring a slight rise in the total annual cost(TAC).This alternative method without a composition controller combined with the energy-saving PSDIC process provides a simple and effective control scheme in industrial production.展开更多
Based on the Floquet theory on ordinary differential equationswith periodically variable coefficients and the bifurcation approachto nonlinear equations, a numerical approach to determining thestability region of cont...Based on the Floquet theory on ordinary differential equationswith periodically variable coefficients and the bifurcation approachto nonlinear equations, a numerical approach to determining thestability region of control parameters is established for a dynamiccontrol system composed of a moving body levitated magnetically overflexible guideways. The system is nonlinearly coupled among theelastic deformation of guideways, disturbance the levitation positionof the body and electromagnet- ic control forces.展开更多
The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with the...The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.展开更多
A double-layered model predictive control(MPC), which is composed of a steady-state target calculation(SSTC)layer and a dynamic control layer, is a prevailing hierarchical structure in industrial process control. Base...A double-layered model predictive control(MPC), which is composed of a steady-state target calculation(SSTC)layer and a dynamic control layer, is a prevailing hierarchical structure in industrial process control. Based on the reason analysis of the dynamic controller infeasibility, an on-line constraints softening strategy is given. At first, a series of regions of attraction(ROA) of the dynamic controller is calculated according to the softened constraints;then a minimal ROA containing the current state is chosen and the corresponding softened constraint is adopted by the dynamic controller. Note that, the above measures are performed on-line because the centers of the above ROA are the steady-state targets calculated at each instant. The effectiveness of the presented strategy is illustrated through two examples.展开更多
Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel ...Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.展开更多
The South China Sea(SCS)has attracted intensive structural and geophysical research over the past decades,with a focus on its extensional history and relevant dynamic tectonic models.Seismic tomographic images obtained
An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dyna...An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability.展开更多
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s...The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.展开更多
In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquidinterface during solidification of a dilute binary alloy are established on the base of assu...In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquidinterface during solidification of a dilute binary alloy are established on the base of assuming that there is local equilibrium at the solid/liquid interface and considering that curvature, temperature and composition at the solid/liquid interface which are related to the perturbation amplitude are nonlinear. As a result, patterns at the solid/liquid interface during solidification process, which is from nonsteadystate to steady state can be controlled by these nonlinear equations.展开更多
A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of...A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals.展开更多
In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Thi...In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Things technology and drawing on the successful experience of air automatic monitoring stations and surface water automatic monitoring stations in management,and developed a dynamic management and control system for automatic monitoring equipment of pollution sources to improve and strengthen the quality audit of automatic monitoring data,further improve the quality of automatic monitoring data and better provide a basis for environmental management and decision making.The system realizes the simultaneous monitoring of monitoring data,running state and parameters of the automatic monitoring equipment,eliminates the phenomenon of falsification by modifying equipment parameters,and judges the validity of the collected data by acquiring the working state of the equipment remotely and randomly.After the actual operation test of the Department of Ecological Environment of Shandong Province,the system is proved to have the characteristics of practicality,real time and high efficiency,and be able to make up for low frequency and narrow coverage of manual inspection,with good application prospect in the field of environment and pollution source monitoring.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when ...IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.展开更多
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th...The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.展开更多
Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively inc...Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice.展开更多
A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V al...A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.展开更多
Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a t...Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.展开更多
基金supported by the National Natural Science Foundation of China (No.50174031)
文摘To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories was developed. Both heat transfer and flux distribution characteristics of the nozzle sprays on the slab were considered, and the complicated boundary conditions, such as spray cooling, natural convection, thermal radiation as well as contact cooling of individual rolls were involved in the model. By using the calibrated caster dependent model factors, the calculated temperature and shell thickness accorded well with the measured. Furthermore, a dynamic secondary water cooling control system was also developed on the basis of a two-dimensional transient heat transfer model (named "online model") and incremental PID control algorithm to reduce slab surface temperature fluctuation in unsteady state. Compared with the traditional spray table control method, the present online model and dynamic PID control demonstrate a higher capability and flexibility to adjust cooling water flowrate and reduce slab surface temperature fluctuation when the casting speed is changed.
基金The work is supported in part by the National Natural Science Foundation of China,Natural Science Foundation of Beijing,National 863 High-Tech Research Development Program of China
文摘It is a challenge to verify integrity of dynamic control flows due to their dynamic and volatile nature. To meet the challenge, existing solutions usually implant an "attachment" in each control transfer. However, the attachment introduces additional cost except performance penalty. For example, the attachment must be unique or restrictedly modified. In this paper, we propose a novel approach to detect integrity of dynamic control flows by counting executed branch instructions without involving any attachment. Our solution is based on the following observation. If a control flow is compromised, the number of executed branch instructions will be abnormally increased. The cause is that intruders usually hijack control flows for malicious execution which absolutely introduces additional branch instructions. Inspired by the above observation, in this paper, we devise a novel system named DCFI- Checker, which detect integrity corruption of dynamic control flows with the support of Performance Monitoring Counter (PMC). We have developed a proof-of-concept prototype system of DCFI-Checker on Linux fedora 5. Our experiments with existing kemel rootkits and buffer overflow attack show that DCFI- Checker is effective to detect compromised dynamic control transfer, and performance evaluations indicate that performance penaltyinduced by DCFI-Checker is acceptable.
基金supported by the National Natural Science Foundation of China (No.21776145 and 21676152)。
文摘Dynamic controls of pressure-swing distillation with an intermediate connection(PSDIC) process of ethyl acetate and ethanol separation were investigated.The double temperature/composition cascade control structure can perfectly implement effective control when ±20% feed disturbances were introduced.This control structure did not require the control of the flowrate of the side stream.The dynamic controllability of PSDIC with partial heat integration(PHIPSDIC) was also explored.The improved control structure can effectively control ±20% feed disturbances.However,in industrial production,simple controller,sensitive and easy to operate,is the optimal target.To avoid the use of component controllers or complex control structure,the original product purities could be maintained using the basic control structure for the PSDIC process if the product purities in steady state were properly increased,albeit by incurring a slight rise in the total annual cost(TAC).This alternative method without a composition controller combined with the energy-saving PSDIC process provides a simple and effective control scheme in industrial production.
基金NSFC(No.19725207)the Pre-research Project of the Committee of Science and Tchnology for Defence of Chinathe Science Foundation of Education Ministry of China for Ph.D Programmes
文摘Based on the Floquet theory on ordinary differential equationswith periodically variable coefficients and the bifurcation approachto nonlinear equations, a numerical approach to determining thestability region of control parameters is established for a dynamiccontrol system composed of a moving body levitated magnetically overflexible guideways. The system is nonlinearly coupled among theelastic deformation of guideways, disturbance the levitation positionof the body and electromagnet- ic control forces.
基金support by the National Natural Science Foundation of China (No. 41372324)support from the Chinese Special Funds for Major State Basic Research Project under Grant No. 2010CB732001
文摘The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.
基金Supported by National Natural Science Foundation of China(61603295,61422303,21376077)the Development Fund for Shanghai Talents(H200-2R-15111)the Key Scientific and Technological Project of Shaanxi Province(2016GY-040)
文摘A double-layered model predictive control(MPC), which is composed of a steady-state target calculation(SSTC)layer and a dynamic control layer, is a prevailing hierarchical structure in industrial process control. Based on the reason analysis of the dynamic controller infeasibility, an on-line constraints softening strategy is given. At first, a series of regions of attraction(ROA) of the dynamic controller is calculated according to the softened constraints;then a minimal ROA containing the current state is chosen and the corresponding softened constraint is adopted by the dynamic controller. Note that, the above measures are performed on-line because the centers of the above ROA are the steady-state targets calculated at each instant. The effectiveness of the presented strategy is illustrated through two examples.
文摘Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.
基金supported by funds from the Graduate School of Peking University
文摘The South China Sea(SCS)has attracted intensive structural and geophysical research over the past decades,with a focus on its extensional history and relevant dynamic tectonic models.Seismic tomographic images obtained
基金Supported by the Ministerial Level Advance Research Foundation(40402050168)
文摘An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability.
文摘The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.
文摘In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquidinterface during solidification of a dilute binary alloy are established on the base of assuming that there is local equilibrium at the solid/liquid interface and considering that curvature, temperature and composition at the solid/liquid interface which are related to the perturbation amplitude are nonlinear. As a result, patterns at the solid/liquid interface during solidification process, which is from nonsteadystate to steady state can be controlled by these nonlinear equations.
基金supported by National Natural Science Foundation of China(No.11405271)
文摘A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals.
文摘In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Things technology and drawing on the successful experience of air automatic monitoring stations and surface water automatic monitoring stations in management,and developed a dynamic management and control system for automatic monitoring equipment of pollution sources to improve and strengthen the quality audit of automatic monitoring data,further improve the quality of automatic monitoring data and better provide a basis for environmental management and decision making.The system realizes the simultaneous monitoring of monitoring data,running state and parameters of the automatic monitoring equipment,eliminates the phenomenon of falsification by modifying equipment parameters,and judges the validity of the collected data by acquiring the working state of the equipment remotely and randomly.After the actual operation test of the Department of Ecological Environment of Shandong Province,the system is proved to have the characteristics of practicality,real time and high efficiency,and be able to make up for low frequency and narrow coverage of manual inspection,with good application prospect in the field of environment and pollution source monitoring.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
文摘IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
基金Project (No. 2006C11148) supported by the ScienceTechnology Project of Zhejiang Province, China
文摘The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079015, 50979011)
文摘Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice.
基金Project(2009CB939705) supported by the National Basic Research Program of ChinaProject(200233) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD)
文摘A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.
基金supported by the Nonprofit Sector Specific Research of Ministry of Water Resources (Grant No. 200701015)
文摘Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.