期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
1
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
An efficient method for train-track-substructure dynamic interaction analysis by implicit-explicit integration and multi-time-step solution 被引量:2
2
作者 Lei Xu Wanming Zhai +1 位作者 Shengyang Zhu Weizheng Liu 《Railway Engineering Science》 2023年第1期20-36,共17页
In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut... In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method. 展开更多
关键词 Train-track dynamic interaction Substructure system Implicit integration Explicit integration Multi-time-step solution Railway engineering
下载PDF
A Train-Bridge Dynamic Interaction Analysis Method and Its Experimental Validation 被引量:16
3
作者 Nan Zhang Yuan Tian He Xia 《Engineering》 SCIE EI 2016年第4期528-536,共9页
The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the runn... The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed. 展开更多
关键词 Train-bridge dynamic interaction Wheel/rail relationship Inter-history iteration Field measurement Experimental validation
下载PDF
Dynamic interaction nursing intervention on functional rehabilitation and self-care ability of patients after aneurysm surgery 被引量:7
4
作者 Yan-E Xie Wei-Cheng Huang +2 位作者 Yu-Ping Li Jia-Huan Deng Jian-Ting Huang 《World Journal of Clinical Cases》 SCIE 2022年第15期4827-4835,共9页
BACKGROUND Nursing practices based on the dynamic interaction model have been shown to be superior to generic nursing practices.However,whether this model is effective in patients recovering from intracranial aneurysm... BACKGROUND Nursing practices based on the dynamic interaction model have been shown to be superior to generic nursing practices.However,whether this model is effective in patients recovering from intracranial aneurysm surgery is not well studied.AIM To investigate the effect of nursing based on a dynamic interaction model on functional rehabilitation of patients after aneurysm surgery.METHODS A total of 86 cases in our hospital with intracranial aneurysm from April 2019 to April 2021,were selected and divided into the study group and the control group,with 43 patients in each group.The control group received routine nursing,and the research group received nursing intervention based on a dynamic interaction model.The daily living ability(activities of daily living,ADL),cognitive function(Simple Intelligent Mental State Scale,MMSE),quality of life(Generic Quality of Life Inventory-74,GQOL-74),self-care ability(Exercise of Self-Care Agency scale),incidence of complications,and nursing satisfaction were recorded before and after intervention.RESULTS Before intervention,ADL(52.09±6.44),MMSE(18.03±4.11),and GQOL-74(53.68±4.34)scores in the study group were not significantly different from those in the control group(ADL:50.97±7.32,MMSE:17.59±3.82,GQOL-74:55.06±3.98)(P>0.05).After intervention,ADL(86.12±5.07),MMSE(26.64±2.66),and GQOL-74(83.13±5.67)scores in the study group were higher than those in the control group(ADL:79.81±6.35,MMSE:24.51±3.00,and GQOL-74:77.96±6.27)(P<0.05).Before intervention,self-concept(17.46±4.44),self-care skills(25.22±4.20),self-care knowledge(22.35±4.74),and self-care responsibility(15.06±3.29)scores in the study group was similar to those in the control group(self-concept:16.89±5.53,self-care skills:24.59±4.46,self-care knowledge:21.80±3.61,and self-care responsibility:14.83±3.11)(P>0.05).After the intervention,self-concept(26.01±3.18),self-care skills(37.68±6.05),self-care knowledge(45.56±5.83),and self-care responsibility(22.01±3.77)scores in the study group were higher than those in the control group(self-concept:22.97±3.46,self-care skills:33.02±5.65,selfcare skills knowledge:36.81±5.54,and self-care responsibility:17.97±3.56 points)(P<0.05).The incidence of complications in the study group(4.65%)was lower than that in the control group(18.60%)(P<0.05).Nursing satisfaction in the study group(95.35%)was higher than that in the control group(81.40%)(P<0.05).CONCLUSION Nursing intervention based on a dynamic interaction model can improve postoperative cognitive function,daily living ability,self-care ability,quality of life,and patient satisfaction,while reducing the risk of complications. 展开更多
关键词 ANEURYSM dynamic interaction model Functional rehabilitation Self-care ability
下载PDF
Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half space subjected to incident plane waves 被引量:5
5
作者 Zhongxian Liu Yirui Wang Jianwen Liang 《Earthquake Science》 CSCD 2016年第3期185-201,共17页
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the... The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel. 展开更多
关键词 Vertically overlapping lined tunnels Scattering Indirect boundary integration equation method(IBIEM) Soil-tunnel dynamic interaction
下载PDF
Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method 被引量:2
6
作者 Li Jianbo Liu Jun Lin Gao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期541-546,共6页
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ... Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model. 展开更多
关键词 time domain analysis dynamic interaction acceleration impulse response function scaled boundary finiteelement method viscoelastic boundary
下载PDF
Dynamic Interaction of Parallel Moving Ships in Close Proximity 被引量:2
7
作者 M. Rafiqul Islam Motohiko Murai 《Journal of Marine Science and Application》 2013年第3期261-271,共11页
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ... Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction. 展开更多
关键词 3D source distribution dynamic interaction close proximity parallel moving ships ship motion
下载PDF
Comparative study on wheel-rail dynamic interactions of side-frame cross-bracing bogie and sub-frame radial bogie 被引量:4
8
作者 Chunlei Yang Fu Li +2 位作者 Yunhua Huang Kaiyun Wang Baiqian He 《Journal of Modern Transportation》 2013年第1期1-8,共8页
Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-fr... Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-frame radial bogie are developed in China. In order to analyze and compare dynamic interactions of the two newly developed heavy-haul freight bogies, we establish a vehi- cle-track coupling dynamic model and use numerical calculation methods for computer simulation. The dynamic performances of the two bogies are simulated separately at various conditions. The results show that at the dipped joint and straight line running conditions, the wheel-rail dynamic interactions of both bogies are basically the same, but at the curve negotiation condition, the wear and the lateral force of the side-frame cross-bracing bogie are much higher than that of the sub-frame radial bogie, and the advantages become more obvious when the curve radius is smaller. The results also indicate that the sub- frame radial bogie has better low-wheel-rail interaction characteristics. 展开更多
关键词 Heavy haul Side-frame cross-bracing bogie .Sub-frame radial bogie . Wheel-rail dynamic interaction
下载PDF
An experimental study on the effects of friction modifiers on wheel-rail dynamic interactions with various angles of attack 被引量:1
9
作者 Zhen Yang Pan Zhang +1 位作者 Jan Moraal Zili Li 《Railway Engineering Science》 2022年第3期360-382,共23页
By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion c... By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion conditions and mitigating wheel/rail interface deterioration,energy consumption,vibration and noise.Understanding the effectiveness of FMs in wheel–rail dynamic interactions is crucial to their proper applications in practice,which has,however,not been well explained.This study experimentally investigates the effects of two types of top-of-rail FM,i.e.FM-A and FM-B,and their application dosages on wheel–rail dynamic interactions with a range of angles of attack(AoAs)using an innovative well-controlled V-track test rig.The tested FMs have been used to provide intermediate friction for wear and noise reduction.The effectiveness of the FMs is assessed in terms of the wheel–rail adhesion characteristics and friction rolling induced axle box acceleration(ABA).This study provides the following new insights into the study of FM:the applications of the tested FMs can both reduce the wheel–rail adhesion level and change the negative friction characteristic to positive;stick–slip can be generated in the V-Track and eliminated by FM-A but intensified by FM-B,depending on the dosage of the FMs applied;the negative friction characteristic is not a must for stick–slip;the increase in ABA with AoA is insignificant until stick–slip occurs and the ABA can thus be influenced by the applications of FM. 展开更多
关键词 Friction modifier V-track test rig ADHESION Wheel–rail dynamic interaction Angle of attack Axle box acceleration
下载PDF
Analysis of Dynamic Interaction Between Deeply Embedded Platform and Foundation Soil
10
作者 Yao Minglun and Li Dacheng Professor, Tianjin University, Tianjing 300072 《China Ocean Engineering》 SCIE EI 1994年第3期251-258,共8页
-Dynamic interaction characteristics of the model deeply embedded platform and foundation soil are studied by means of dynamic substructuring interface transformation synthesis and dynamic condensation. The theoretica... -Dynamic interaction characteristics of the model deeply embedded platform and foundation soil are studied by means of dynamic substructuring interface transformation synthesis and dynamic condensation. The theoretical analysis, computer programs and practical examples are presented; and the results are compared with those obtained by statical condensation method and finite element method. 展开更多
关键词 PLATFORM foundation soil dynamic substructure dynamic condensation dynamic interaction
下载PDF
Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction 被引量:28
11
作者 CHEN Zhao Wei ZHAI Wan Ming +1 位作者 CAI Cheng Biao SUN Yu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第2期202-210,共9页
This paper presents a method to determine the safety threshold of bridge pier settlement in high-speed railways.An analytical expression of the mapping relationship between the pier settlement and the rail deformation... This paper presents a method to determine the safety threshold of bridge pier settlement in high-speed railways.An analytical expression of the mapping relationship between the pier settlement and the rail deformation is derived theoretically for the double block ballastless track-bridge system.By adopting the superposition of the track random irregularity and the rail deformation caused by the pier settlement as the excitation inputs,the variations of vehicle dynamics indices with pier settlement are comparatively analyzed.Then,the safety threshold of the bridge pier settlement is obtained according to the limit of vehicle running safety and ride comfort indices of the high-speed trains.Results show that the dynamics indices of different trains have different sensitivities to the pier settlement,and the train CRH2C is the most sensitive one among all the types of Chinese high-speed trains.When passing through the bridges in common span with pier settlement at the speed of 250–350 km/h,the trains suffer the low-frequency excitations,and the vertical acceleration of car body is most sensitive to the pier settlement of all the dynamics indices.When the car body vertical acceleration just exceeds the allowable limit,the critical settlement value is 23.4 mm,which is much bigger than the pier differential settlement limit in the current code for Chinese high-speed railways. 展开更多
关键词 high-speed railway pier settlement safety threshold dynamic characteristics train-track-bridge dynamic interaction
原文传递
Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway 被引量:22
12
作者 WANG Kai Yun LIU Peng Fei +3 位作者 ZHAI Wan Ming HUANG Chao CHEN Zai Gang GAO JianMin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第2期226-235,共10页
Characteristics of wheel-rail dynamic interaction due to the rail corrugation in a high-speed railway are analyzed based on the theory of vehicle-track coupled dynamics in this paper.Influences of the corrugation wave... Characteristics of wheel-rail dynamic interaction due to the rail corrugation in a high-speed railway are analyzed based on the theory of vehicle-track coupled dynamics in this paper.Influences of the corrugation wavelength and depth on the wheel-rail dynamic performance are investigated.The results show that,under the excitation of a measured rail corrugation,the wheel-rail dynamic interaction of high-speed railway is enhanced obviously,and the high-frequency dynamic force between wheel and rail is generated,which has an obvious impact on the vibrations of the wheelset and rail,and little effect on the vibration of the frame and carbody.If the corrugation wavelength is shorter than the sensitive wavelength,the wheel-rail vertical force will increase with the growth of the corrugation wavelength,otherwise,it will decrease.However,the wheel-rail vertical force keeps increasing with the growth of corrugation depth.Furthermore,if the corrugation wavelength is shorter than the sensitive wavelength,the wheel-rail vertical force will increase with the decrease of the running speed,otherwise,it will decrease.It is also found that the critical wavelength of corrugation increases with the growth of the corrugation depth and the running speed,and the critical depth of corrugation is nonlinearly related to the sensitive wavelength. 展开更多
关键词 dynamic interaction rail corrugation high-speed railway critical wavelength critical depth sensitive wavelength
原文传递
On dynamic analysis method for large-scale train-track-substructure interaction 被引量:2
13
作者 Lei Xu 《Railway Engineering Science》 2022年第2期162-182,共21页
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo... Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums. 展开更多
关键词 TRAIN Track dynamic interaction Railway substructures Finite elements dynamics system Iterative solution Tunnel Bridge
下载PDF
Computational simulation of convective flow in the Earth crust under consideration of dynamic crust-mantle interactions 被引量:1
14
作者 赵崇斌 彭省临 +2 位作者 刘亮明 B.E.HOBBS A.ORD 《Journal of Central South University》 SCIE EI CAS 2011年第6期2080-2084,共5页
The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper ... The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper mantle was simulated as fluid-saturated porous rocks, while the upper aesthenospheric part of the mantle was simulated as viscous fluids. Since the whole lithosphere was computationally simulated, the dynamic interaction between the crust and the upper mantle was appropriately considered. In particular, the mixing of mantle fluids and crustal fluids was simulated in the corresponding computational model. The related computational simulation results from an example problem demonstrate that the mantle fluids can flow into the crust and mix with the crustal fluids due to the resulting convective flows in the crust-mantle system. Likewise, the crustal fluids can also flow into the upper mantle and mix with the mantle fluids. This kind of fluids mixing and exchange is very important to the better understanding of the governing processes that control the ore body formation and mineralization in the upper crust of the Earth. 展开更多
关键词 computational simulation crustal fluids mantle fluids fluid dynamic interaction
下载PDF
Elastic responses of underground circular arches considering dynamic soil-structure interaction:A theoretical analysis 被引量:11
15
作者 Hai-Long Chen Feng-Nian Jin Hua-Lin Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第1期110-122,共13页
Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibra... Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibration of circular arches subjected to subsurface denotation forces is obtained. The dynamic soil-structure interaction is considered with the introduction of an interfacial damping between the structure element and the surrounding soil into the equa- tion of motion. By neglecting the influences of shear, rotary inertia and tangential forces and assuming the arch incompressible, the equations of motion of the buried arches were set up. Analytical solutions of the dynamic responses of the protective arches were deduced by means of modal super- position. Arches with different opening angles, acoustic impedances and rise-span ratios were analyzed to discuss their influences on an arch. The theoretical analysis suggests blast loads for elastic designs and predicts the potential failure modes for buried protective arches. 展开更多
关键词 Underground protective arches - dynamic soilstructure interaction dynamic responses Analytical solution
下载PDF
Dynamic soil-tunnel interaction in layered half-space for incident P-and SV-waves 被引量:4
16
作者 Jia Fu Jianwen Liang Lin Qin 《Earthquake Science》 CSCD 2015年第4期275-284,共10页
The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The ind... The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The indirect boundary element method is used, combined with the Green' s function of distributed loads acting on inclined lines. It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homoge- neous half-space, and that the mechanism of soil-tunnel interaction is also different much from that of soil-founda- tion-superstructure interaction. For oblique incidence, the tunnel response for in-plane incident SV-waves is com- pletely different from that for incident SH-waves, while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave. 展开更多
关键词 Underground tunnel Layered half-space P-wave and SV-wave Indirect boundary element method Soil-tunnel interaction ~ Site dynamic characteristics
下载PDF
Interaction of cetyltrimethylammonium bromide with drug in aqueous/electrolyte solution:A combined conductometric and molecular dynamics method study 被引量:3
17
作者 Md.Anamul Hoque Md.Masud Alam +5 位作者 Mohammad Robel Molla Shahed Rana Malik Abdul Rub Mohammad A.Halim Mohammed Abdullah Khan Farida Akhtar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期159-167,共9页
Interaction between beta-lactum antibiotic drug ciprofloxacin hydrochloride(CFH)and cationic surfactant cetyltrimethylammonium bromide(CTAB)was performed conductometrically in aqueous as well as in the occurrence of d... Interaction between beta-lactum antibiotic drug ciprofloxacin hydrochloride(CFH)and cationic surfactant cetyltrimethylammonium bromide(CTAB)was performed conductometrically in aqueous as well as in the occurrence of different salts(NaCl,KCl as well as NH_4Cl)over the temperature range of 298.15–323.15 K at the regular interval of 5 K.CFH drug has been suggested for the treatment of bacterial infections such as urinary tract infections and acute sinusitis.A clear critical micelle concentration(CMC)was obtained for pure CTAB as well as(CFH+CTAB)mixed systems.The decrease in CMC values of CTAB caused by the addition of CFH reveals the existence of the interaction between the components and therefore it is the indication of micelle formation at lower concentration of CTAB and their CMC values further decrease in attendance of salts.A nonlinear behavior in the CMC versus T plot was observed in all the cases.The ΔG_m^0 values are found to be negative in present study systems demonstrated the stability of the solution.The values of ΔH_m^0 and ΔS_m^0 reveal the existence of hydrophobic and electrostatic interactions between CFH and CTAB.The thermodynamic properties of transfer for the micellization were also evaluated and discussed in detail.Molecular dynamic simulation disclosed that environment of water and salts have impact on the hydrophobic interaction between CFH and CTAB.In water and salts,CTAB adopts spherical micelle in which charged hydrophilic groups are interacted with waters whereas hydrophobic tails form the core of the micelle.This hydrophobic core region is highly conserved and protected.In addition,micelle formation is more favorable in aqueous Na Cl solution than other solutions. 展开更多
关键词 Ciprofloxacin hydrochloride Cetyltrimethylammonium bromide Molecular dynamics Flydrophobic interaction Salt effect
下载PDF
Ground substrates classification and adaptive walking through interaction dynamics for legged robots 被引量:1
18
作者 邵雪松 杨一平 王伟 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第3期100-108,共9页
Adaptive locomotion in different types of surfaces is of critical importance for legged robots.The knowledge of various ground substrates,especially some geological properties,plays an essential role in ensuring the l... Adaptive locomotion in different types of surfaces is of critical importance for legged robots.The knowledge of various ground substrates,especially some geological properties,plays an essential role in ensuring the legged robots'safety.In this paper,the interaction between the robots and the environments is investigated through interaction dynamics with the closed-loop system model,the compliant contact model,and the friction model,which unveil the influence of environment's geological characteristics for legged robots'locomotion.The proposed method to classify substrates is based on the interaction dynamics and the sensory-motor coordination.The foot contact forces,joint position errors,and joint motor currents,which reflect body dynamics,are measured as the sensing variables.We train and classify the features extracted from the raw data with a multilevel weighted k-Nearest Neighbor(kNN) algorithm.According to the interaction dynamics,the strategy of adaptive walking is developed by adjusting the touchdown angles and foot trajectories while lifting up and dropping down the foot.Experiments are conducted on five different substrates with quadruped robot FROG-I.The comparison with other classification methods and adaptive walking between different substrates demonstrate the effectiveness of our approach. 展开更多
关键词 legged robot ground substrates classification adaptive walking interaction dynamics
下载PDF
Population Interaction Dynamics Analysis of an Algae-Fish System 被引量:1
19
作者 Ziyou Zhuang Jueyuan Yan +4 位作者 Xinyu Xie Lihua Dai Chaoyue Huang Fangfang Chen Hengguo Yu 《Applied Mathematics》 2022年第6期544-565,共22页
In this paper, before the implementation of ecological laboratory experiments, the population interaction dynamics of an algae-fish system were studied mathematically and numerically. The purpose of this study was to ... In this paper, before the implementation of ecological laboratory experiments, the population interaction dynamics of an algae-fish system were studied mathematically and numerically. The purpose of this study was to explore how filter-feeding fish population affects the growth dynamics of the algae population. Mathematically theoretical works have been pursuing the investigation of some key conditions for stability of the equilibrium and existence of Hopf bifurcation. Numerical simulation works have been parsing the discovery of the growth dynamics of the algae population in view of population interaction dynamics, which in turn could prove the feasibility of the theoretical derivation and reveal the relationship between filter-feeding fish abundance and algal biomass in fish-drift algae communiyua. Furthermore, it was successful to show that the filter-feeding fish population may be a crucial factor in controlling the proliferation of the algae population, which could also directly grasp the evolution of community dynamics. All these results were expected to be useful in the study of community dynamics and laboratory elimination experiment of the algae population. 展开更多
关键词 Algae Population Filter-Feeding Fish Population interaction dynamics Hopf Bifurcation STABILITY
下载PDF
Soil-Structure Interaction Effects on Dynamic Behaviour of Transmission Line Towers
20
作者 Abir Jendoubi Frédéric Legeron 《Computers, Materials & Continua》 SCIE EI 2022年第1期1461-1477,共17页
As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The ... As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The proposed study investigates the dynamic effects of SSI on TLT behavior.Linear and non-linearmodels are studied.In the linearmodel,the soil is represented by complex impedances,dependent of dynamic frequency,determined from numerical simulations.The nonlinearmodel considers the soil non-linear behavior in its material constitutive law and foundation uplift in a non-linear time history analysis.The simplified structure behavior of a typical lattice transmission tower is assessed.The analysis of frequency and time domain are followed through varying soil stiffness and damping values.Three different shock durations are investigated.The soil-structure system with equivalent dynamic properties is determined.The behaviors achieved utilizing a rigid and a flexible base for the structures is compared to estimate the impact of taking SSI into account in the calculation.The current mainstream approach in structural engineering,emphasizing the importance of the SSI effect,is illustrated using an example where the SSI effect could be detrimental to the structure.Furthermore,the non-linear analysis results are analyzed to show the linear approach’s limitations in the event of grand deformations. 展开更多
关键词 TOWER shock loads NON-LINEAR dynamic soil-structure interaction
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部