We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupat...We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.展开更多
We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain.The synthetic space with arbitrary dimension...We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain.The synthetic space with arbitrary dimension can be created by incorporating incommensurate frequencies in the quasi-periodical modulation.In the Hermitian case,strong kicking induces the chaotic diffusion in the four-dimension momentum space characterized by linear growth of mean energy.We find that the quantum coherence in deep non-Hermitian regime can effectively suppress the chaotic diffusion and hence result in the emergence of dynamical localization.Moreover,the extent of dynamical localization is dramatically enhanced by increasing the non-Hermitian parameter.Interestingly,the quasi-energies become complex when the non-Hermitian parameter exceeds a certain threshold value.The quantum state will finally evolve to a quasi-eigenstate for which the imaginary part of its quasi-energy is large most.The exponential localization length decreases with the increase of the non-Hermitian parameter,unveiling the underlying mechanism of the enhancement of the dynamical localization by nonHermiticity.展开更多
In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the po...In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.展开更多
The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied...The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.展开更多
We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localiza...We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly~ the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.展开更多
This paper investigates the behaviour of a pair of electron and hole in semiconductor superlattice under an external electric field with the consideration of Coulomb interaction. By numerically calculating the corresp...This paper investigates the behaviour of a pair of electron and hole in semiconductor superlattice under an external electric field with the consideration of Coulomb interaction. By numerically calculating the corresponding probability in the nearest neighbour tight binding approximation, we find that the single electron (or the hole) can not be dynamically localized due to the Coulomb interaction, while the dynamic localization of exciton (the pair of the electron and hole) still exists. Moreover we find that with the increase of the intensity of electric field, the exciton can be dynamically localized more completely.展开更多
We investigate the dynamics of two interacting electrons confined in a quantum dot molecule under the influence of cosine squared electric fields. The conditions for two-electron localization in the same quantum dot a...We investigate the dynamics of two interacting electrons confined in a quantum dot molecule under the influence of cosine squared electric fields. The conditions for two-electron localization in the same quantum dot are analytically derived within the frame of the Floquet formalism. The analytical results are compared to numerical results obtained from the solution of the time-dependent Schtdinger equation.展开更多
The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reductio...The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface.展开更多
Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each correspondin...Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics(LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the e ective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two?dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the e ectiveness of the LRMD simulation method for two?dimensional cases. A three?dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two?dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational e ciency without losing accuracy during the simula?tion of nanoscale sliding contacts.展开更多
A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using ...A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.展开更多
Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynami...Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynamic balance theory of local flow field in multilayer gob area was built based on the realistic requirement that the serious threat on current mining coal layer by large-scale spontaneous combustion fire on close spontaneous combustion coal layer group of Datong Coal mining area at the 'di-hard' conditions was caused by small coal pit mining. The kernel was in dynamic balance between flow field pressures of working face and local flow field in multilayer gob area was kept by transformation. Corresponding technology and set of devices were developed.展开更多
Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional r...Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.展开更多
Inspired by the recent experimental progress in noisy kicked rotor systems,we investigate the effect of temporal disorder or quasi-periodicity in one-dimensional kicked lattices with pulsed on-site potential.We found ...Inspired by the recent experimental progress in noisy kicked rotor systems,we investigate the effect of temporal disorder or quasi-periodicity in one-dimensional kicked lattices with pulsed on-site potential.We found that,unlike the spatial disorder or quasi-periodicity which usually leads to localization,the effect of the temporal one is more complex and depends on the spatial configuration.If the kicked on-site potential is periodic in real space,then the wave packet will stay diffusive in the presence of temporal disorder or quasi-periodicity.On the other hand,if the kicked on-site potential is spatially quasi-periodic,then the temporal disorder or quasi-periodicity may lead to a shift of the transition point of the dynamical localization and destroy the dynamical localization in a certain parameter range.The results we obtained can be readily tested by experiments and may help us better understand the dynamical localization.展开更多
Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calcula...Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calculation leads to information inaccuracy by the existing dynamic collabo-rative self-organization algorithm in WSNs. In this letter,a Local Dynamic Cluster Self-organization algorithm (LDCS) is proposed for the large-scale regional and moving target monitoring in RM-WSNs. The algorithm utilizes the resource-rich node in WSNs as the cluster head,which processes target information obtained by sensor nodes in cluster. The cluster head shifts with the target moving in chance and re-groups a new cluster. The target information acquisition is limited in the dynamic cluster,which can reduce information across-clusters transfer delay and improve the real-time of information acquisition. The simulation results show that,LDCS can not only relieve the problem of "too frequent leader switches" in IDSQ,also make full use of the history monitoring information of target and con-tinuous monitoring of sensor nodes that failed in DCS.展开更多
Investigating local dynamics of equilibrium points of nonlinear systems plays an important role in studying the behavior of dynamical systems. There are many different definitions for stable and unstable solutions in ...Investigating local dynamics of equilibrium points of nonlinear systems plays an important role in studying the behavior of dynamical systems. There are many different definitions for stable and unstable solutions in the literature. The main goal to develop stability definitions is exploring the responses or output of a system to perturbation as time approaches infinity. Due to the wide range of application of local dynamical system theory in physics, biology, economics and social science, it still attracts many researchers to play with its definitions to find out the answers for their questions. In this paper, we start with a brief review over continuous time dynamical systems modeling and then we bring useful examples to the playground. We study the local dynamics of some interesting systems and we show the local stable behavior of the system around its critical points. Moreover, we look at local dynamical behavior of famous dynamical systems, Hénon-Heiles system, Duffing oscillator and Van der Pol equation and analyze them. Finally, we discuss about the chaotic behavior of Hamiltonian systems using two different and new examples.展开更多
Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission ...Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission coefficient occur and can be explained by the local electron density of states in the quantum dots. The effects of the optical pumping frequency and intensity on the transport properties of the system are also discussed. The electron dynamical localization phenomenon occurs when the optical pumping frequency is equal to the discrete hole energy level. This result can be used to realize optical control switches.展开更多
This paper studies the constraint conditions for coherence destruction in tunneling by using perturbation theory and numerical simulation for an AC-field with bias and Coulomb interaction between electrons in a quantu...This paper studies the constraint conditions for coherence destruction in tunneling by using perturbation theory and numerical simulation for an AC-field with bias and Coulomb interaction between electrons in a quantum dot molecule. Such conditions can be described by using the roots of a Bessel function Jn(x), where n is determined by both the bias and the Coulomb interactions, and x is the ratio of the amplitude to the frequency of the AC-field. Under such conditions, a coherent suppression of tunneling occurs between localized electronic states, which results from the dynamical localization phenomenon. All the conditions are verified with numerical simulations.展开更多
Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacti...Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacting electrons in a coupled quantum dot driven by an external electric field. The results show that the two quantum dots can be used to prepare a maximally entangled Bell state by changing the strength and duration of an oscillatory electric field. Different from the suggestion made by Loss et al (1998 Phys. Rev. A 57 120), the present entanglement involves the spatial degree of freedom for the two electrons. We also find that the coherent tunnelling suppression discussed by Grossmann et al (1991 Phys. Rev. Lett. 67 516) persists in the two-particle case: i.e. two electrons initially localized in one dot can remain dynamically localized, although the strong Coulomb repulsion prevents them from behaving so. Surprisingly, the interaction enhances the degree of localization to a large extent compared with that in the non-interacting case. This phenomenon is referred to as the Coulomb-enhanced dynamical localization.展开更多
The Maryland model is a critical theoretical model in quantum chaos.This model describes the motion of a spin-1/2particle on a one-dimensional lattice under the periodical disturbance of the external delta-function-li...The Maryland model is a critical theoretical model in quantum chaos.This model describes the motion of a spin-1/2particle on a one-dimensional lattice under the periodical disturbance of the external delta-function-like magnetic field.In this work,we propose the linearly delayed quantum relativistic Maryland model(LDQRMM)as a novel generalization of the original Maryland model and systematically study its physical properties.We derive the resonance and antiresonance conditions for the angular momentum spread.The“characteristic sum”is introduced in this paper as a new measure to quantify the sensitivity between the angular momentum spread and the model parameters.In addition,different topological patterns emerge in the LDQRMM.It predicts some additions to the Anderson localization in the corresponding tight-binding systems.Our theoretical results could be verified experimentally by studying cold atoms in optical lattices disturbed by a linearly delayed magnetic field.展开更多
Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two interna...Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilib- rium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and deriva- tive controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI con- troller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude sta- bilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11204016)
文摘We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12065009 and 12365002)the Science and Technology Planning Project of Jiangxi Province of China(Grant Nos.20224ACB201006 and 20224BAB201023)。
文摘We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain.The synthetic space with arbitrary dimension can be created by incorporating incommensurate frequencies in the quasi-periodical modulation.In the Hermitian case,strong kicking induces the chaotic diffusion in the four-dimension momentum space characterized by linear growth of mean energy.We find that the quantum coherence in deep non-Hermitian regime can effectively suppress the chaotic diffusion and hence result in the emergence of dynamical localization.Moreover,the extent of dynamical localization is dramatically enhanced by increasing the non-Hermitian parameter.Interestingly,the quasi-energies become complex when the non-Hermitian parameter exceeds a certain threshold value.The quantum state will finally evolve to a quasi-eigenstate for which the imaginary part of its quasi-energy is large most.The exponential localization length decreases with the increase of the non-Hermitian parameter,unveiling the underlying mechanism of the enhancement of the dynamical localization by nonHermiticity.
基金This work was supported by National Natural Science Foundation of China,Nos.62002359 and 61836015the Beijing Advanced Discipline Fund,No.115200S001.
文摘In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.
基金Project supported in part by the National Natural Science Foundations of China (Grant No 10274007), and a grant of the China Academy of Engineering and Physics.
文摘The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.
文摘We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly~ the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.
文摘This paper investigates the behaviour of a pair of electron and hole in semiconductor superlattice under an external electric field with the consideration of Coulomb interaction. By numerically calculating the corresponding probability in the nearest neighbour tight binding approximation, we find that the single electron (or the hole) can not be dynamically localized due to the Coulomb interaction, while the dynamic localization of exciton (the pair of the electron and hole) still exists. Moreover we find that with the increase of the intensity of electric field, the exciton can be dynamically localized more completely.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.A201405104)
文摘We investigate the dynamics of two interacting electrons confined in a quantum dot molecule under the influence of cosine squared electric fields. The conditions for two-electron localization in the same quantum dot are analytically derived within the frame of the Floquet formalism. The analytical results are compared to numerical results obtained from the solution of the time-dependent Schtdinger equation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41002110,41272330and41130745)the research fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2012Z003)supported by the funding of Science and Technology Office of Sichuan Province(Grant No.2012JY0110)
文摘The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface.
基金National Natural Science Foundation of China(Grant Nos.51675429,51205313)Fundamental Research Funds for the Central Universities of China(Grant No.3102014JCS05009)111 Project of China(Grant No.B13044)
文摘Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics(LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the e ective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two?dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the e ectiveness of the LRMD simulation method for two?dimensional cases. A three?dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two?dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational e ciency without losing accuracy during the simula?tion of nanoscale sliding contacts.
基金supported by the National 973 Scientific and Technological Innovation Project (No. 2004CB719402)National Natural Science Foundation of China (No. 10672055)+3 种基金Key Project of NSFC (No. 60635020)Natural Science Foundation for Out standing Youth of China (No. 50625519)Hunan Provincial Natural Science Foundation of China (No. 07JJ6002)Scientific Research Fund of Hunan Provincial Education Department of China (No. 08C230)
文摘A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.
基金Supported by the Key Projects of the National Natural Science Foundation of China (50834002)
文摘Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynamic balance theory of local flow field in multilayer gob area was built based on the realistic requirement that the serious threat on current mining coal layer by large-scale spontaneous combustion fire on close spontaneous combustion coal layer group of Datong Coal mining area at the 'di-hard' conditions was caused by small coal pit mining. The kernel was in dynamic balance between flow field pressures of working face and local flow field in multilayer gob area was kept by transformation. Corresponding technology and set of devices were developed.
基金funded by the Special Research Fund for Seismology(201408020)the Natural Science Foundation of China (51578514,U1434210)
文摘Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.
基金Project supported by the National Natural Science Foundation of China(Grant No.11575087)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160094)
文摘Inspired by the recent experimental progress in noisy kicked rotor systems,we investigate the effect of temporal disorder or quasi-periodicity in one-dimensional kicked lattices with pulsed on-site potential.We found that,unlike the spatial disorder or quasi-periodicity which usually leads to localization,the effect of the temporal one is more complex and depends on the spatial configuration.If the kicked on-site potential is periodic in real space,then the wave packet will stay diffusive in the presence of temporal disorder or quasi-periodicity.On the other hand,if the kicked on-site potential is spatially quasi-periodic,then the temporal disorder or quasi-periodicity may lead to a shift of the transition point of the dynamical localization and destroy the dynamical localization in a certain parameter range.The results we obtained can be readily tested by experiments and may help us better understand the dynamical localization.
基金Supported by the Key Projection of Science and Technology Research of Ministry of Education of China (107057)the Science & Technology Fund for Students of Hohai University (K200803)
文摘Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calculation leads to information inaccuracy by the existing dynamic collabo-rative self-organization algorithm in WSNs. In this letter,a Local Dynamic Cluster Self-organization algorithm (LDCS) is proposed for the large-scale regional and moving target monitoring in RM-WSNs. The algorithm utilizes the resource-rich node in WSNs as the cluster head,which processes target information obtained by sensor nodes in cluster. The cluster head shifts with the target moving in chance and re-groups a new cluster. The target information acquisition is limited in the dynamic cluster,which can reduce information across-clusters transfer delay and improve the real-time of information acquisition. The simulation results show that,LDCS can not only relieve the problem of "too frequent leader switches" in IDSQ,also make full use of the history monitoring information of target and con-tinuous monitoring of sensor nodes that failed in DCS.
文摘Investigating local dynamics of equilibrium points of nonlinear systems plays an important role in studying the behavior of dynamical systems. There are many different definitions for stable and unstable solutions in the literature. The main goal to develop stability definitions is exploring the responses or output of a system to perturbation as time approaches infinity. Due to the wide range of application of local dynamical system theory in physics, biology, economics and social science, it still attracts many researchers to play with its definitions to find out the answers for their questions. In this paper, we start with a brief review over continuous time dynamical systems modeling and then we bring useful examples to the playground. We study the local dynamics of some interesting systems and we show the local stable behavior of the system around its critical points. Moreover, we look at local dynamical behavior of famous dynamical systems, Hénon-Heiles system, Duffing oscillator and Van der Pol equation and analyze them. Finally, we discuss about the chaotic behavior of Hamiltonian systems using two different and new examples.
文摘Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission coefficient occur and can be explained by the local electron density of states in the quantum dots. The effects of the optical pumping frequency and intensity on the transport properties of the system are also discussed. The electron dynamical localization phenomenon occurs when the optical pumping frequency is equal to the discrete hole energy level. This result can be used to realize optical control switches.
基金Project supported by Natural Science Foundation of Hebei Normal University for Young Teachers (Grant No. L2009Q07)
文摘This paper studies the constraint conditions for coherence destruction in tunneling by using perturbation theory and numerical simulation for an AC-field with bias and Coulomb interaction between electrons in a quantum dot molecule. Such conditions can be described by using the roots of a Bessel function Jn(x), where n is determined by both the bias and the Coulomb interactions, and x is the ratio of the amplitude to the frequency of the AC-field. Under such conditions, a coherent suppression of tunneling occurs between localized electronic states, which results from the dynamical localization phenomenon. All the conditions are verified with numerical simulations.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10544004 and 10574017).
文摘Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacting electrons in a coupled quantum dot driven by an external electric field. The results show that the two quantum dots can be used to prepare a maximally entangled Bell state by changing the strength and duration of an oscillatory electric field. Different from the suggestion made by Loss et al (1998 Phys. Rev. A 57 120), the present entanglement involves the spatial degree of freedom for the two electrons. We also find that the coherent tunnelling suppression discussed by Grossmann et al (1991 Phys. Rev. Lett. 67 516) persists in the two-particle case: i.e. two electrons initially localized in one dot can remain dynamically localized, although the strong Coulomb repulsion prevents them from behaving so. Surprisingly, the interaction enhances the degree of localization to a large extent compared with that in the non-interacting case. This phenomenon is referred to as the Coulomb-enhanced dynamical localization.
基金Project supported by the Science and Technology Development Fund(FDCT)of Macao,China(Grant Nos.0014/2022/A1 and 0042/2018/A2)the National Natural Science Foundation of China(Grant Nos.11761161001,12035011,and 11975167)
文摘The Maryland model is a critical theoretical model in quantum chaos.This model describes the motion of a spin-1/2particle on a one-dimensional lattice under the periodical disturbance of the external delta-function-like magnetic field.In this work,we propose the linearly delayed quantum relativistic Maryland model(LDQRMM)as a novel generalization of the original Maryland model and systematically study its physical properties.We derive the resonance and antiresonance conditions for the angular momentum spread.The“characteristic sum”is introduced in this paper as a new measure to quantify the sensitivity between the angular momentum spread and the model parameters.In addition,different topological patterns emerge in the LDQRMM.It predicts some additions to the Anderson localization in the corresponding tight-binding systems.Our theoretical results could be verified experimentally by studying cold atoms in optical lattices disturbed by a linearly delayed magnetic field.
基金supported by the Innovation Foundation of BUAA for Ph.D Graduatesthe Innovation Foundation of the National Laboratory of Space Intelligent Control
文摘Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilib- rium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and deriva- tive controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI con- troller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude sta- bilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy.