Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity....Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.展开更多
Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts...Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.展开更多
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material...The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.展开更多
文摘Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.
文摘Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.
基金National Natural Science Foundation of China(No.61761027)。
文摘The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.