Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash...Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash, and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3-level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α= 0.001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.展开更多
Based on the calculation and analysis of energy-saving benefit under various operating conditions, and the investment payback period for the low pressure economizer of the 3rd stage project of Longkou Power Plant, the...Based on the calculation and analysis of energy-saving benefit under various operating conditions, and the investment payback period for the low pressure economizer of the 3rd stage project of Longkou Power Plant, the optimum operating conditions of the system and its reasonable heating surface are defined, and the feasibility of the design alternative of the low pressure economizer system is verified.展开更多
The tendency for air column resonance generation in structures with a constant volume behind a tube array like that of an exhaust gas economizer has been reported, but many points remain unclear with respect to the me...The tendency for air column resonance generation in structures with a constant volume behind a tube array like that of an exhaust gas economizer has been reported, but many points remain unclear with respect to the mechanism and conditions that generate acoustical resonance. When acoustical resonance is generated, in reality, prevention and suppression measures are implemented by inserting a baffle plate into the ducts through a process of trial and error. The purpose of this study is to clarify the mechanism of generation of acoustical resonance, and to establish an appropriate measure to prevent such resonance. Noise generated in an exhaust gas economizer was correlated with the flow inside the tube array and experimentally analyzed, and the mechanism for resonance generation was considered. In addition, the effectiveness of a baffle plate positioned in order to prevent resonance was investigated. We have successfully employed a single baffle plate to suppress resonance.展开更多
A combination of solar hot water system with the economizer for heating the water that circulates in the hot water storage tank is presented with the objective to reduce and analyze the cost of investment. The solar c...A combination of solar hot water system with the economizer for heating the water that circulates in the hot water storage tank is presented with the objective to reduce and analyze the cost of investment. The solar collector area will be affected to the investment cost of the solar hot water system. A combined system can be reduced the cost of solar collector by using the waste heat from the economizer to produce the hot water for reaching the requirement of the industry. In this paper the economizer installs in the boiler stack of the industry and produces hot water at 60 ℃ of 5,400 liter per day and the solar hot water system produces the hot water at the same temperature of 6,100 liter per day. The analysis is proposed by determining the solar collector plate area from the data and calculation. Investment cost of the system is 151,000 baht for the solar hot water system of 110,000 baht and the economizer of 410,000 baht for producing the total hot water of 115,000 liter per day.展开更多
A two temperature CO_(2) refrigeration system with economizer is proposed and compared with the traditional dual-temperature CO_(2) refrigeration system based on energy consumption,exergy and economic analysis.Using g...A two temperature CO_(2) refrigeration system with economizer is proposed and compared with the traditional dual-temperature CO_(2) refrigeration system based on energy consumption,exergy and economic analysis.Using genetic algorithm multi-objective optimization method,taking the COP,exergy loss and total economic cost as the objective functions to find the best design conditions of the two systems.The Pareto fronts are obtained at different ambient temperatures.Technique for order preference by similarity to an ideal solution decision-making method is adopted to determine the optimum state points.The simulation results show that when operating at different ambient temperatures,the introduction of economizer can improve COP,reduce exergy loss and the overall economic cost rate of the two-temperature CO_(2) refrigeration system.In addition,economic analyses take the impact of carbon dioxide emission cost and electricity price into consideration.The results indicate that with the increase of CO_(2) emission cost and electricity price,the hourly economic cost of both systems increases,but the hourly economic cost of the two-temperature CO_(2) refrigeration system with economizer system is always lower than that of conventional two-temperature CO_(2) refrigeration system.展开更多
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut...Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.展开更多
Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive propor...Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive proportion of the population to CVD risk factors,and this situation is further worsened due to the accelerated aging population in China.CVD remains one of the greatest threats to the health of Chinese residents.In terms of the proportions of disease mortality among urban and rural residents in China,CVD has persistently ranked first.In 2021,CVD accounted for 48.98%and 47.35%of deaths in rural and urban areas,respectively.Two out of every five deaths can be attributed to CVD.To implement a national policy“focusing on the primary health institute and emphasizing prevention”and truly achieve a shift of CVD prevention and treatment from hospitals to communities,the National Center for Cardiovascular Diseases has organized experts from relevant fields across China to compile the“Report on Cardiovascular Health and Diseases in China”annually since 2005.The 2024 report is established based on representative,published,and high-quality big-data research results from cross-sectional and cohort population epidemiological surveys,randomized controlled clinical trials,large sample registry studies,and typical community prevention and treatment cases,along with data from some projects undertaken by the National Center for Cardiovascular Diseases.These firsthand data not only enrich the content of the current report but also provide a more timely and comprehensive reflection of the status of CVD prevention and treatment in China.展开更多
To meet the goal of worldwide decarbonization,the transformation process toward clean and green energy structures has accelerated.In this context,coal-fired power plant(CFPP)and large-scale energy storage represented ...To meet the goal of worldwide decarbonization,the transformation process toward clean and green energy structures has accelerated.In this context,coal-fired power plant(CFPP)and large-scale energy storage represented by compressed air energy storage(CAES)technology,are tasked with increasing renewable resource accommodation and maintaining the power system security.To achieve this,this paper proposes the concept of a CFPP-CAES combined cycle and a trigenerative system based on that.Considering the working conditions of the CFPP,thermal characteristics of three typical operation modes were studied and some general regularities were identified.The results of various potential integration schemes discussion indicated that extracting water from low-temperature points in the feedwater system to cool pressurized air and simultaneously increase the backwater temperature is beneficial for improving performance.In addition,preheating the pressurized air before the air expanders via lowgrade water in the feedwater system as much as possible and reducing extracted steam contribute to increasing the efficiency.With the optimal integration scheme,2.85 tonnes of coal can be saved per cycle and the round-trip efficiency can be increased by 2.24%.Through the cogeneration of heat and power,the system efficiency can reach 77.5%.In addition,the contribution degree of the three compression heat utilization methods to the performance improvement ranked from high to low,is preheating the feedwater before the boiler,supplying heat,and flowing into the CFPP feedwater system.In the cooling energy generation mode,the system efficiency can be increased to over 69%.Regardless of the operation mode,the benefit produced by integration is further enhanced when the CFPP operates at higher operating conditions because the coupling points parameters are changed.In addition,the dynamic payback period can be shortened by 11.33 years and the internal rate of return increases by 5.20%under a typical application scenario.Regarding the effect of different application scenarios in terms of economics,investing in the proposed system is more appropriate in regions with multiple energy demands,especially heating demand.These results demonstrate the technical advantages of the proposed system and provide guiding principles for its design,operation,and project investment.展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
The literature on urban vitality tends to focus on the built environment.This paper argues that some important processes in shaping vitality may be overlooked without examining the intensity and diversity of economic ...The literature on urban vitality tends to focus on the built environment.This paper argues that some important processes in shaping vitality may be overlooked without examining the intensity and diversity of economic and human activities.Using newly developed spatial big data and adopting the methods of multi-indicator measurement and spatial analysis methods,we analyzed the pattern of urban vitality in Chongqing,a provincial city in western China and,on this basis,evaluated the creation and maintenance of urban vitality from the economic and human activities perspective.Our findings indicate that the impacts of economic and human activities are positive and significant.Among the three intensity and diversity indicators,economic intensity and population density show an effect on urban vitality stronger than that of economic diversity.However,economic diversity has the strongest superposition or interactive effect,and is thus an important foundation dynamic.The positive effect of population density on urban vitality is largely a result of Chongqing’s jobs-housing balance.The case of Chongqing highlights the importance of topographic features,historical inheritance,large-scale migration,and cultural activities in shaping the distinctive vitality pattern of a city.This study contends that the creation and maintenance of urban vitality can not be fully explained without incorporating the impacts of economic and human activities.It contributes to a comprehensive measurement of urban vitality and enriches its connotations.展开更多
In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional ...In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.展开更多
The myostatin(MSTN)gene is considered a potential genetic marker to improve economically important traits in live-stock,since the discovery of its function using the MSTN knockout mice.The anti-myogenic function of th...The myostatin(MSTN)gene is considered a potential genetic marker to improve economically important traits in live-stock,since the discovery of its function using the MSTN knockout mice.The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations.In poultry species,myo-genesis in cell culture was regulated by modulation of the MSTN gene.Also,different expression levels of the MSTN gene in poultry models with different muscle mass have been reported,indicating the conserved myogenic function of the MSTN gene between mammalian and avian species.Recent advances of CRISPR/Cas9-mediated genome edit-ing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly dem-onstrate its anti-myogenic function and further investigate other potential functions in poultry species.This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms.Furthermore,the genome-edited poultry models targeting the MSTN gene are reviewed to inte-grate diverse effects of the MSTN gene on different traits of poultry species.展开更多
The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal p...The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.展开更多
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in...Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.展开更多
Grasslands in northern China serve the country as both an ecological barrier and a livestock production base.There,installing enclosures has been becoming the major grassland restoration measure adopted by many local ...Grasslands in northern China serve the country as both an ecological barrier and a livestock production base.There,installing enclosures has been becoming the major grassland restoration measure adopted by many local governments.However,the effects of restoration on both ecological and production benefits of grassland remain unclear for implemented grassland restoration policies.Therefore,a representative rangeland in northern China,the Maodeng pasture in Inner Mongolia Autonomous Region was selected as the study area,and remote sensing monitoring analyses were carried out to quantify the ecological benefits and economic benefits from 2015 to 2021.The results showed that:1) in terms of ecological benefits,the grassland area with a grassland coverage rate of more than 60% accounts for 32.3% of the regional area,and 86.4% of its grassland grew significantly better than the same period in2015,showing a significant improvement in grassland growth.Using the average amount of carbon per unit area as the ecological benefit evaluation index,it increased by 27.1% to 32.48Tg C/yr from 2015 to 2021.2) In terms of economic benefits,both theoretical grass production and livestock carrying capacity increased from 2015 to 2021.Compared to 2015,the theoretical grass production in 2021 increased by 24.8% to 71 900 t.The livestock carrying capacity reached 52 100 sheep units in 2021,nearly 11 000 sheep units more than that in 2015.During the study period,multiple economic indicators(on a per capita basis of permanent residents) for the pastoral area of Xilinhot City to which the Maodeng pasture belongs,have grown steadily.Per capita total income rose from 29 630 yuan(RMB) in2015 to 62 859 yuan(RMB) in 2021.Relying on grassland resources to develop the pastoral ecology also broadens the potential economic development space.Overall,the establishment of the reserve and the experiment of implanting an enclosure policy have had a significant and positive impact on Maodeng pasture’s development from both an ecological and economic perspective.With the support of scientific evidence,enclosure policy can be extended to more than 110 000 km~2 of grasslands in northern China with similar precipitation and temperature conditions,enhancing the productive and ecological potential of grasslands.The above research results will contribute to the scientific formulation of grassland pasture quality improvement plans in northern China.展开更多
The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable soc...The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China...This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.展开更多
The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities ...The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.展开更多
文摘Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash, and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3-level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α= 0.001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.
文摘Based on the calculation and analysis of energy-saving benefit under various operating conditions, and the investment payback period for the low pressure economizer of the 3rd stage project of Longkou Power Plant, the optimum operating conditions of the system and its reasonable heating surface are defined, and the feasibility of the design alternative of the low pressure economizer system is verified.
文摘The tendency for air column resonance generation in structures with a constant volume behind a tube array like that of an exhaust gas economizer has been reported, but many points remain unclear with respect to the mechanism and conditions that generate acoustical resonance. When acoustical resonance is generated, in reality, prevention and suppression measures are implemented by inserting a baffle plate into the ducts through a process of trial and error. The purpose of this study is to clarify the mechanism of generation of acoustical resonance, and to establish an appropriate measure to prevent such resonance. Noise generated in an exhaust gas economizer was correlated with the flow inside the tube array and experimentally analyzed, and the mechanism for resonance generation was considered. In addition, the effectiveness of a baffle plate positioned in order to prevent resonance was investigated. We have successfully employed a single baffle plate to suppress resonance.
文摘A combination of solar hot water system with the economizer for heating the water that circulates in the hot water storage tank is presented with the objective to reduce and analyze the cost of investment. The solar collector area will be affected to the investment cost of the solar hot water system. A combined system can be reduced the cost of solar collector by using the waste heat from the economizer to produce the hot water for reaching the requirement of the industry. In this paper the economizer installs in the boiler stack of the industry and produces hot water at 60 ℃ of 5,400 liter per day and the solar hot water system produces the hot water at the same temperature of 6,100 liter per day. The analysis is proposed by determining the solar collector plate area from the data and calculation. Investment cost of the system is 151,000 baht for the solar hot water system of 110,000 baht and the economizer of 410,000 baht for producing the total hot water of 115,000 liter per day.
基金supported by the National Natural Science Foundation of China (Grant No. 51776110)。
文摘A two temperature CO_(2) refrigeration system with economizer is proposed and compared with the traditional dual-temperature CO_(2) refrigeration system based on energy consumption,exergy and economic analysis.Using genetic algorithm multi-objective optimization method,taking the COP,exergy loss and total economic cost as the objective functions to find the best design conditions of the two systems.The Pareto fronts are obtained at different ambient temperatures.Technique for order preference by similarity to an ideal solution decision-making method is adopted to determine the optimum state points.The simulation results show that when operating at different ambient temperatures,the introduction of economizer can improve COP,reduce exergy loss and the overall economic cost rate of the two-temperature CO_(2) refrigeration system.In addition,economic analyses take the impact of carbon dioxide emission cost and electricity price into consideration.The results indicate that with the increase of CO_(2) emission cost and electricity price,the hourly economic cost of both systems increases,but the hourly economic cost of the two-temperature CO_(2) refrigeration system with economizer system is always lower than that of conventional two-temperature CO_(2) refrigeration system.
文摘Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.
文摘Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive proportion of the population to CVD risk factors,and this situation is further worsened due to the accelerated aging population in China.CVD remains one of the greatest threats to the health of Chinese residents.In terms of the proportions of disease mortality among urban and rural residents in China,CVD has persistently ranked first.In 2021,CVD accounted for 48.98%and 47.35%of deaths in rural and urban areas,respectively.Two out of every five deaths can be attributed to CVD.To implement a national policy“focusing on the primary health institute and emphasizing prevention”and truly achieve a shift of CVD prevention and treatment from hospitals to communities,the National Center for Cardiovascular Diseases has organized experts from relevant fields across China to compile the“Report on Cardiovascular Health and Diseases in China”annually since 2005.The 2024 report is established based on representative,published,and high-quality big-data research results from cross-sectional and cohort population epidemiological surveys,randomized controlled clinical trials,large sample registry studies,and typical community prevention and treatment cases,along with data from some projects undertaken by the National Center for Cardiovascular Diseases.These firsthand data not only enrich the content of the current report but also provide a more timely and comprehensive reflection of the status of CVD prevention and treatment in China.
文摘To meet the goal of worldwide decarbonization,the transformation process toward clean and green energy structures has accelerated.In this context,coal-fired power plant(CFPP)and large-scale energy storage represented by compressed air energy storage(CAES)technology,are tasked with increasing renewable resource accommodation and maintaining the power system security.To achieve this,this paper proposes the concept of a CFPP-CAES combined cycle and a trigenerative system based on that.Considering the working conditions of the CFPP,thermal characteristics of three typical operation modes were studied and some general regularities were identified.The results of various potential integration schemes discussion indicated that extracting water from low-temperature points in the feedwater system to cool pressurized air and simultaneously increase the backwater temperature is beneficial for improving performance.In addition,preheating the pressurized air before the air expanders via lowgrade water in the feedwater system as much as possible and reducing extracted steam contribute to increasing the efficiency.With the optimal integration scheme,2.85 tonnes of coal can be saved per cycle and the round-trip efficiency can be increased by 2.24%.Through the cogeneration of heat and power,the system efficiency can reach 77.5%.In addition,the contribution degree of the three compression heat utilization methods to the performance improvement ranked from high to low,is preheating the feedwater before the boiler,supplying heat,and flowing into the CFPP feedwater system.In the cooling energy generation mode,the system efficiency can be increased to over 69%.Regardless of the operation mode,the benefit produced by integration is further enhanced when the CFPP operates at higher operating conditions because the coupling points parameters are changed.In addition,the dynamic payback period can be shortened by 11.33 years and the internal rate of return increases by 5.20%under a typical application scenario.Regarding the effect of different application scenarios in terms of economics,investing in the proposed system is more appropriate in regions with multiple energy demands,especially heating demand.These results demonstrate the technical advantages of the proposed system and provide guiding principles for its design,operation,and project investment.
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
基金Under the auspices of the National Natural Science Foundation of China(No.42071178,41671139)。
文摘The literature on urban vitality tends to focus on the built environment.This paper argues that some important processes in shaping vitality may be overlooked without examining the intensity and diversity of economic and human activities.Using newly developed spatial big data and adopting the methods of multi-indicator measurement and spatial analysis methods,we analyzed the pattern of urban vitality in Chongqing,a provincial city in western China and,on this basis,evaluated the creation and maintenance of urban vitality from the economic and human activities perspective.Our findings indicate that the impacts of economic and human activities are positive and significant.Among the three intensity and diversity indicators,economic intensity and population density show an effect on urban vitality stronger than that of economic diversity.However,economic diversity has the strongest superposition or interactive effect,and is thus an important foundation dynamic.The positive effect of population density on urban vitality is largely a result of Chongqing’s jobs-housing balance.The case of Chongqing highlights the importance of topographic features,historical inheritance,large-scale migration,and cultural activities in shaping the distinctive vitality pattern of a city.This study contends that the creation and maintenance of urban vitality can not be fully explained without incorporating the impacts of economic and human activities.It contributes to a comprehensive measurement of urban vitality and enriches its connotations.
文摘In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.
基金funded by the United States Department of Agricul-ture National Institute of Food and Agriculture Grant(Project No.2020-67030-31338)。
文摘The myostatin(MSTN)gene is considered a potential genetic marker to improve economically important traits in live-stock,since the discovery of its function using the MSTN knockout mice.The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations.In poultry species,myo-genesis in cell culture was regulated by modulation of the MSTN gene.Also,different expression levels of the MSTN gene in poultry models with different muscle mass have been reported,indicating the conserved myogenic function of the MSTN gene between mammalian and avian species.Recent advances of CRISPR/Cas9-mediated genome edit-ing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly dem-onstrate its anti-myogenic function and further investigate other potential functions in poultry species.This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms.Furthermore,the genome-edited poultry models targeting the MSTN gene are reviewed to inte-grate diverse effects of the MSTN gene on different traits of poultry species.
基金funded by the Natural Science Foundation of China (Grant No. 42271030)Fujian Provincial Funds for Distinguished Young Scientists (Grant No. 2022J06018)Applied Basic Research Programs of Yunnan province (Grant No. 202001BB050073)。
文摘The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.
基金supported by the National Natural Science Foundation of China(52009140).
文摘Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.
基金Under the auspices of the Inner Mongolia Autonomous Region Science and Technology Achievement Transformation Special Project(No.2020CG0123)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA26050301-01)。
文摘Grasslands in northern China serve the country as both an ecological barrier and a livestock production base.There,installing enclosures has been becoming the major grassland restoration measure adopted by many local governments.However,the effects of restoration on both ecological and production benefits of grassland remain unclear for implemented grassland restoration policies.Therefore,a representative rangeland in northern China,the Maodeng pasture in Inner Mongolia Autonomous Region was selected as the study area,and remote sensing monitoring analyses were carried out to quantify the ecological benefits and economic benefits from 2015 to 2021.The results showed that:1) in terms of ecological benefits,the grassland area with a grassland coverage rate of more than 60% accounts for 32.3% of the regional area,and 86.4% of its grassland grew significantly better than the same period in2015,showing a significant improvement in grassland growth.Using the average amount of carbon per unit area as the ecological benefit evaluation index,it increased by 27.1% to 32.48Tg C/yr from 2015 to 2021.2) In terms of economic benefits,both theoretical grass production and livestock carrying capacity increased from 2015 to 2021.Compared to 2015,the theoretical grass production in 2021 increased by 24.8% to 71 900 t.The livestock carrying capacity reached 52 100 sheep units in 2021,nearly 11 000 sheep units more than that in 2015.During the study period,multiple economic indicators(on a per capita basis of permanent residents) for the pastoral area of Xilinhot City to which the Maodeng pasture belongs,have grown steadily.Per capita total income rose from 29 630 yuan(RMB) in2015 to 62 859 yuan(RMB) in 2021.Relying on grassland resources to develop the pastoral ecology also broadens the potential economic development space.Overall,the establishment of the reserve and the experiment of implanting an enclosure policy have had a significant and positive impact on Maodeng pasture’s development from both an ecological and economic perspective.With the support of scientific evidence,enclosure policy can be extended to more than 110 000 km~2 of grasslands in northern China with similar precipitation and temperature conditions,enhancing the productive and ecological potential of grasslands.The above research results will contribute to the scientific formulation of grassland pasture quality improvement plans in northern China.
基金Under the auspices of the National Natural Science Foundation of China(No.71974070)‘CUG Scholar'Scientific Research Funds at China University of Geosciences(Wuhan)(No.2022005)。
文摘The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
文摘This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.
文摘The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.