Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferrugin...Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.展开更多
Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to...Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values.展开更多
Quantitative assessment of organic carbon(OC)stocks in different habitats is crucial in ecology.Understanding the drivers affecting OC stocks across distinct carbon pools is essential for comprehending current pattern...Quantitative assessment of organic carbon(OC)stocks in different habitats is crucial in ecology.Understanding the drivers affecting OC stocks across distinct carbon pools is essential for comprehending current patterns and predicting future changes.Alpine ecosystems,important for atmospheric CO_(2)regulation and highly vulnerable to climate change,are priority study areas.This research aims to estimate OC stocks in different pools(soil,organic horizons,and aboveground vegetation)and identify factors influencing these stocks in an alpine environment.We sampled 146 sites representing six forest types and two grassland types in the Gran Paradiso National Park(northern Italian Alps).Field samples of soils,organic horizons,and data on aboveground trees were collected to assess OC stocks,along with environmental variables.Our findings reveal nuanced variations in OC stocks across different ecosystem components.In grasslands,average soil OC was 5.57 kg m^(-2),while in forests it was 4.11 kg m^(-2).Organic horizons contained an average of 0.70 kg m^(-2),and aboveground vegetation in forests stored 6.61 kg m^(-2).Linear Mixed Models indicate that soil OC is influenced by habitat type,soil type,and elevation.OC in organic horizons is affected by aspect and forest habitat type,with composting further influenced by elevation.These results contribute to OC stock inventories for alpine ecosystems and enhance our understanding of how environmental factors influence carbon storage.Importantly,they underscore the need to consider soil type and other factors beyond land use when modeling OC stocks.This insight has implications for designing effective territorial strategies to address climate change,emphasizing the importance of a multifaceted approach to carbon stock assessment and management in alpine regions.展开更多
Groundwater-Dependent Ecosystems(GDEs)in the arid region of northwest China are crucial for maintaining ecological balance and biodiversity.However,the ongoing decline in groundwater levels caused by excessive groundw...Groundwater-Dependent Ecosystems(GDEs)in the arid region of northwest China are crucial for maintaining ecological balance and biodiversity.However,the ongoing decline in groundwater levels caused by excessive groundwater exploitation poses a potential threat to GDEs.This paper reviews the current developments and future challenges associated with defining groundwater level thresholds for maintaining GDEs in arid regions.It focuses on methods for identifying and investigating these thresholds,with particular attention to recent advances in northwest China.Additionally,this paper highlights the limitations and future challenges in determining these thresholds,including the complexities of ecological processes,groundwater systems,data availability,and methodological constraints.To address these issues,a multidisciplinary approach that incorporates new technologies,such as multi-source data fusion,machine learning models,and big data and cloud computing,will be essential.By overcoming these challenges and utilizing effective methods,appropriate groundwater level thresholds can be established to ensure the longterm sustainability of GDEs.展开更多
The question of the impact of war on ecosystems still remains secondary in the internal and external policy of states, society and the agenda of international organizations. From the point of view of losses in monetar...The question of the impact of war on ecosystems still remains secondary in the internal and external policy of states, society and the agenda of international organizations. From the point of view of losses in monetary terms, the values of ecosystem damages obtained in the work, which are a consequence of the impact of hostilities on the environment, correspond to the annual budgets of the largest countries in the world or exceed them. The presented calculations significantly exceed the known normative methods, the use of which in the conditions of war is limited in space and time. Objective difficulties associated with the uncertainty of many processes of the development of ecological systems and their reaction to the multifactorial impact of war are also significant limitations. Therefore, as part of the study, a method of assessing the impact of war on the environment is proposed, which is based on the patterns of energy flows in ecosystems from the moment it is binding by producers. This made it possible to take into account in the calculations the principle of functional integrity of the ecological system, according to which the destruction or damage of the components of a functionally whole environment will necessarily cause negative phenomena in the development of ecological systems. The results are presented in the form of real values of ecological losses in energy and monetary equivalents, as consequences of the loss of ecosystem services. As the results of the research show, the minimum amount of damage to ecosystems from Russian tanks is 43,500 USD per day. Environmental damage from Russian fighter jets has been estimated at $1.5 billion per week since the start of the war. Noise from military operations causes losses of at least 2.3 billion US dollars per year. The obtained results create prerequisites for improving the system of ensuring environmental safety at the local, state, and international levels and transferring the obtained solutions into safety-shaping practice.展开更多
As global urbanization accelerates,urban ecosystems are facing unprecedented challenges.In the past,humans have seen themselves as masters of the universe,controlling natural resources through large-scale urbanization...As global urbanization accelerates,urban ecosystems are facing unprecedented challenges.In the past,humans have seen themselves as masters of the universe,controlling natural resources through large-scale urbanization.However,with a deeper understanding of ecosystems,people are realizing that they are only one part of the ecosystem,and that the health of urban ecosystems is directly related to the well-being and future of humanity.展开更多
This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa re...This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .展开更多
Microclimate characteristics and related environmental energy mechanisms were examined based on the long term located observations in the mature, thinned and young Cunninghamia lanceolata plantation ecosystems in...Microclimate characteristics and related environmental energy mechanisms were examined based on the long term located observations in the mature, thinned and young Cunninghamia lanceolata plantation ecosystems in western Hunan Province, China. The results show that the mature plantation ecosystem can improve the microclimate significantly by regulating the amount and spatial distribution of environmental energy, which delineates the pattern of the microclimate in forest ecosystems in the process of ecological restoration. Compared with the young plantation, the mature plantation ecosystem decreased annual mean air temperature by 0 4℃. The maximum decrease in monthly mean air temperature was 2 3℃. The mature plantation ecosystem decreased annual mean ground temperature by 1 2℃ with a maximum decrease in monthly mean ground temperature of 2 3℃. Mainly due to the dense canopy, the mature forest ecosystem regulates the distribution of radiation energy, and expenditure ratios of heat budget and principal energy components to decrease temperature or make it even.展开更多
基金Anglo American and Knowledge Center for Biodiversity for financial supportthe research funding agencies CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico)+2 种基金scholarship from CNPq(151341/2023-0,150001/2023-1)FAPEMIG(Fundação de AmparoàPesquisa do Estado de Minas Gerais)Peld-CRSC 17(Long Term Ecology Program-campo rupestre of Serra do Cipó)。
文摘Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.
基金supported via funding from Ministry of Defense,Government of Pakistan under Project Number AHQ/95013/6/4/8/NASTP(ACP).Titled:Development of ICT and Artificial Intelligence Based Precision Agriculture Systems Utilizing Dual-Use Aerospace Technologies-GREENAI.
文摘Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values.
文摘Quantitative assessment of organic carbon(OC)stocks in different habitats is crucial in ecology.Understanding the drivers affecting OC stocks across distinct carbon pools is essential for comprehending current patterns and predicting future changes.Alpine ecosystems,important for atmospheric CO_(2)regulation and highly vulnerable to climate change,are priority study areas.This research aims to estimate OC stocks in different pools(soil,organic horizons,and aboveground vegetation)and identify factors influencing these stocks in an alpine environment.We sampled 146 sites representing six forest types and two grassland types in the Gran Paradiso National Park(northern Italian Alps).Field samples of soils,organic horizons,and data on aboveground trees were collected to assess OC stocks,along with environmental variables.Our findings reveal nuanced variations in OC stocks across different ecosystem components.In grasslands,average soil OC was 5.57 kg m^(-2),while in forests it was 4.11 kg m^(-2).Organic horizons contained an average of 0.70 kg m^(-2),and aboveground vegetation in forests stored 6.61 kg m^(-2).Linear Mixed Models indicate that soil OC is influenced by habitat type,soil type,and elevation.OC in organic horizons is affected by aspect and forest habitat type,with composting further influenced by elevation.These results contribute to OC stock inventories for alpine ecosystems and enhance our understanding of how environmental factors influence carbon storage.Importantly,they underscore the need to consider soil type and other factors beyond land use when modeling OC stocks.This insight has implications for designing effective territorial strategies to address climate change,emphasizing the importance of a multifaceted approach to carbon stock assessment and management in alpine regions.
基金financially supported by the China Geological Survey Project(No.DD20230472).
文摘Groundwater-Dependent Ecosystems(GDEs)in the arid region of northwest China are crucial for maintaining ecological balance and biodiversity.However,the ongoing decline in groundwater levels caused by excessive groundwater exploitation poses a potential threat to GDEs.This paper reviews the current developments and future challenges associated with defining groundwater level thresholds for maintaining GDEs in arid regions.It focuses on methods for identifying and investigating these thresholds,with particular attention to recent advances in northwest China.Additionally,this paper highlights the limitations and future challenges in determining these thresholds,including the complexities of ecological processes,groundwater systems,data availability,and methodological constraints.To address these issues,a multidisciplinary approach that incorporates new technologies,such as multi-source data fusion,machine learning models,and big data and cloud computing,will be essential.By overcoming these challenges and utilizing effective methods,appropriate groundwater level thresholds can be established to ensure the longterm sustainability of GDEs.
文摘The question of the impact of war on ecosystems still remains secondary in the internal and external policy of states, society and the agenda of international organizations. From the point of view of losses in monetary terms, the values of ecosystem damages obtained in the work, which are a consequence of the impact of hostilities on the environment, correspond to the annual budgets of the largest countries in the world or exceed them. The presented calculations significantly exceed the known normative methods, the use of which in the conditions of war is limited in space and time. Objective difficulties associated with the uncertainty of many processes of the development of ecological systems and their reaction to the multifactorial impact of war are also significant limitations. Therefore, as part of the study, a method of assessing the impact of war on the environment is proposed, which is based on the patterns of energy flows in ecosystems from the moment it is binding by producers. This made it possible to take into account in the calculations the principle of functional integrity of the ecological system, according to which the destruction or damage of the components of a functionally whole environment will necessarily cause negative phenomena in the development of ecological systems. The results are presented in the form of real values of ecological losses in energy and monetary equivalents, as consequences of the loss of ecosystem services. As the results of the research show, the minimum amount of damage to ecosystems from Russian tanks is 43,500 USD per day. Environmental damage from Russian fighter jets has been estimated at $1.5 billion per week since the start of the war. Noise from military operations causes losses of at least 2.3 billion US dollars per year. The obtained results create prerequisites for improving the system of ensuring environmental safety at the local, state, and international levels and transferring the obtained solutions into safety-shaping practice.
文摘As global urbanization accelerates,urban ecosystems are facing unprecedented challenges.In the past,humans have seen themselves as masters of the universe,controlling natural resources through large-scale urbanization.However,with a deeper understanding of ecosystems,people are realizing that they are only one part of the ecosystem,and that the health of urban ecosystems is directly related to the well-being and future of humanity.
文摘This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .
文摘Microclimate characteristics and related environmental energy mechanisms were examined based on the long term located observations in the mature, thinned and young Cunninghamia lanceolata plantation ecosystems in western Hunan Province, China. The results show that the mature plantation ecosystem can improve the microclimate significantly by regulating the amount and spatial distribution of environmental energy, which delineates the pattern of the microclimate in forest ecosystems in the process of ecological restoration. Compared with the young plantation, the mature plantation ecosystem decreased annual mean air temperature by 0 4℃. The maximum decrease in monthly mean air temperature was 2 3℃. The mature plantation ecosystem decreased annual mean ground temperature by 1 2℃ with a maximum decrease in monthly mean ground temperature of 2 3℃. Mainly due to the dense canopy, the mature forest ecosystem regulates the distribution of radiation energy, and expenditure ratios of heat budget and principal energy components to decrease temperature or make it even.