The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×...The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×10^(−3)μm^(2).In order to reveal the characteristics and efectiveness of ultra-deep fractures and their efects on reservoir properties and natural gas production,outcrops,cores,thin section,image logs and production testing data are used to investigate the efectiveness of tectonic fractures in ultra-deep reservoirs in the Kuqa foreland thrust zone,and the corresponding geological signifcance for oil and gas exploration and development are discussed.Tectonic fractures in the thrust belt include EW-trending high-angle tensile fractures and NS-trending vertical shear fractures.The former has a relatively high flling rate,while the latter is mostly unflled.Micro-fractures are usually grain-piercing-through cracks with width of 10-100 microns.In the planar view,the efective fractures are concentrated in the high part and wing zones of the long axis of the anticline,and along the vertical direction,they are mainly found in the tensile fracture zone above the neutral plane.The adjustment fracture zone has the strongest vertical extension abilities and high efectiveness,followed by the nearly EW longitudinal tensile fracture zone,and the netted fracture zone with multiple dip angles.The efectiveness of fracture is mainly controlled by fracture aperture and flling degrees.Efective fractures can increase reservoir permeability by 1-2 orders of magnitude.The higher part of the anticline is associated with high tectonic fracture permeability,which control enrichment and high production of natural gas.The netted vertical open fractures efectively communicate with pores and throats of the reservoir matrix,which forms an apparent-homogenous to medium-heterogeneous body that is seen with high production of natural gas sustained for a long term.展开更多
Background:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world,especially in highly populated regions.The healthcare capacity...Background:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world,especially in highly populated regions.The healthcare capacity(especially the testing resources,vaccination coverage,and hospital capacity)is becoming extremely insufcient as the demand will far exceed the supply.To address this time-critical issue,we need to answer a key question:How can we efectively infer the daily transmission risks in diferent districts using machine learning methods and thus lay out the corresponding resource prioritization strategies,so as to alleviate the impact of the Omicron outbreaks?Methods:We propose a computational method for future risk mapping and optimal resource allocation based on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant.We collect the publicly available data from the ofcial website of the Hong Kong Special Administrative Region(HKSAR)Government and the study period in this paper is from December 27,2021 to July 17,2022(including a period for future prediction).First,we construct the spatiotemporal transmission intensity matrices across diferent districts based on infection case records.With the constructed cross-district transmission matrices,we forecast the future risks of various locations daily by means of the Gaussian process.Finally,we develop a transmission-guided resource prioritization strategy that enables efective control of Omicron outbreaks under limited capacity.Results:We conduct a comprehensive investigation of risk mapping and resource allocation in Hong Kong,China.The maps of the district-level transmission risks clearly demonstrate the irregular and spatiotemporal varying patterns of the risks,making it difcult for the public health authority to foresee the outbreaks and plan the responses accordingly.With the guidance of the inferred transmission risks,the developed prioritization strategy enables the optimal testing resource allocation for integrative case management(including case detection,quarantine,and further treatment),i.e.,with the 300,000 testing capacity per day;it could reduce the infection peak by 87.1% compared with the population-based allocation strategy(case number reduces from 20,860 to 2689)and by 24.2% compared with the case-based strategy(case number reduces from 3547 to 2689),signifcantly alleviating the burden of the healthcare system.Conclusions:Computationally characterizing spatiotemporal transmission patterns allows for the efective risk mapping and resource prioritization;such adaptive strategies are of critical importance in achieving timely outbreak control under insufcient capacity.The proposed method can help guide public-health responses not only to the Omicron outbreaks but also to the potential future outbreaks caused by other new variants.Moreover,the investigation conducted in Hong Kong,China provides useful suggestions on how to achieve efective disease control with insufcient capacity in other highly populated countries and regions.展开更多
The incre asing interest in RNA modifications has signifcantly advanced epigenomic and epitranscriptomic technologies.This study focuses on the immuno oncological impact of ALYREF in human cancer through a pan-cancer ...The incre asing interest in RNA modifications has signifcantly advanced epigenomic and epitranscriptomic technologies.This study focuses on the immuno oncological impact of ALYREF in human cancer through a pan-cancer analysis,enhancing understanding of this gene's role in cancer.We observed differential ALYREF expression between tumor and normal samples,correl ating strongly with prognosis in various cancers,particularly kidney renal papillary cell carcinoma(KIRP)and liver hepatocellular carcinoma(LIHC).ALYREF showed a negative correlation with most tumor-infitrating cells in lung squamous cell carcinoma(LUSC)and lymphoid neoplasm difuse large B-cell lymphoma(DLBC),while positive correlations were noted in IIHC,kidney chromophobe(KICH),mesothelioma(MESO),KIRP,pheochromocytoma and paraganglioma(PARD),and glioma(GBMLGG).Aditionally,ALYREF expression was closely associated with tumor heterogeneity,stemness indices,and a high mutation rate in TP53 across these cancers.In conclusion,ALYREF may serve as an oncogenic biomarker in numerous cancers,meriting further research attention.展开更多
Blast pressure measurements of a controlled underwater explosion in the sea were carried out.An explosive of 25-kg trinitro-toluene(TNT)equivalent was detonated,and the blast pressures were recorded by eight diferent ...Blast pressure measurements of a controlled underwater explosion in the sea were carried out.An explosive of 25-kg trinitro-toluene(TNT)equivalent was detonated,and the blast pressures were recorded by eight diferent high-performance pressure sensors that work at the nonresonant high-voltage output in adverse underwater conditions.Recorded peak pressure values are used to establish a relationship in the well-known form of empirical underwater explosion(UNDEX)loading formula.Constants of the formula are redetermined by employing the least-squares method in two diferent forms for best ftting to the measured data.The newly determined constants are found to be only slightly diferent from the generally accepted ones.展开更多
Coal is the one of foundations of energy and economic structure in China,while the unsealing of coal mine fres would cause a great risk of coal re-ignition.In order to explore the infuence of pressure-bearing state on...Coal is the one of foundations of energy and economic structure in China,while the unsealing of coal mine fres would cause a great risk of coal re-ignition.In order to explore the infuence of pressure-bearing state on the re-ignition characteristics for residual coal,the uniaxial compression equipped with a temperature-programmed device was built.The scanning electron microscope,synchronous thermal analyzer and Fourier transform infrared absorption spectrometer was applied to investigate the microscopic structure and thermal efect of the coal samples.Moreover,the microscopic efect of uniaxial stress on coal re-ignition is revealed,and the re-ignition mechanism is also obtained.As the uniaxial stress increasing,the number,depth and length of the fractures of the pre-treated coal increases.The application of uniaxial stress causes the thermal conductivity to change periodically,enhances the inhibition of injecting nitrogen on heat transfer and prolonges the duration of oxidation exothermic.The content of oxygen-containing functional groups has a high correlation with apparent activation energy,and coal samples at 6 MPa is more probability to re-ignite while the fre zone is unsealed.Uniaxial stress could control the re-ignition mechanism by changing the structure of fractures and pores.The side chains and functional groups of coal structure are easier to be broken by thermal-stress coupling.The higher the·OH content,the more difcult coal samples would be re-ignited.The research results would lay a solid theoretical foundation for the safe unsealing of closed fre-areas underground,tighten the common bond between the actual industry and the experimental theory in closed fre-areas underground,and provide the theoretical guidance for coal re-ignition preventing.展开更多
Deep rock mass tends to be broken into blocks when mining for materials deep below the surface.The rock layer of the roof of the mine can be regarded as a system of blocks of fractured rock mass.When subjected to high...Deep rock mass tends to be broken into blocks when mining for materials deep below the surface.The rock layer of the roof of the mine can be regarded as a system of blocks of fractured rock mass.When subjected to high ground stress and mining-induced disturbance,the efect of the ultra-low friction of the block system easily becomes apparent,and can induce rock burst and other accidents.By taking the block of rock mass as research object,this study developed a test system for ultra-low friction to experimentally examine its efects on the broken blocks under stress wave-induced disturbance.We used the horizontal displacement of the working block as the characteristic parameter refecting the efect of ultra-low friction,and examine its characteristic laws of horizontal displacement,acceleration,and energy when subjected to the efects of ultra-low friction by changing the frequency and amplitude of the stress wave-induced disturbance.The results show that the frequency of stress wave-induced disturbance is related to the generation of ultra-low friction in the broken block.The frequency of disturbance of the stress wave is within 1–3 Hz,and signifcantly increases the maximum acceleration and horizontal displacement of the broken blocks.The greater the intensity of the stress wave-induced disturbance is,the higher is the degree of block fragmentation,and the more likely are efects of ultra-low friction to occur between the blocks.The greater the intensity of the horizontal impact load is,the higher is the degree of fragmentation of the rock mass,and the easier it is for the efects of ultra-low friction to occur.Stress wave-induced disturbance and horizontal impact are the main causes of sliding instability of the broken blocks.When the dominant frequency of the kinetic energy of the broken block is within 20 Hz,the efects of ultra-low friction are more likely.展开更多
The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, ther...The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.展开更多
The bactericidal effect of laser radiation with a quartz fiber-based transmission system with a strong absorption coating converter against bacteria associated with urological stones has been studied.Gr am-negative ro...The bactericidal effect of laser radiation with a quartz fiber-based transmission system with a strong absorption coating converter against bacteria associated with urological stones has been studied.Gr am-negative rod Escherichia coli and the Gram-positive coccus Staphylococcus epi-dermidis,Staphylococcus aureus,Enterococcus faecalis and Enterococcus faecium were used in this study.Each bacterial species was treated by continuous-wave near infrared laser coupled with bare fiber tip or strongly absorption coating fiber tip.After treatment,the temperature of bacterial suspension was measured.In addition,the temperature dist ribution was analyzed.It has been shown that using laser with a strongly absorption coating fiber tip results in significant bactericidal effect.The decrease of the amount of E.coli and S.epidermidis was 100%after treatment with an output power of6 W of radiation at a wavelength of 0.97 pum for 40s.Number of S.aureus and Ent.facium colony-forming unit was reduced to 70%after same exposure.The peak temperature of bacterial suspension was 86℃ after treatment by laser with a strongly absorption coating fiber tip.Laser with a strongly absorpt ion coating fiber tip provides large scale hydrodynamic flows directed away from the fiber tip.The laser with a strongly absorption coating fiber tip has bactericidal effect.The main role is associated with the effect of high temperature,which,in the form of flow in a liquid medium,afects bacteria.展开更多
We observed a phenomenon that different scattering components have different decorrelation time.Based on decorrelation time difference,we proposed a method to image an object hidden behind a turbid medium in a reflect...We observed a phenomenon that different scattering components have different decorrelation time.Based on decorrelation time difference,we proposed a method to image an object hidden behind a turbid medium in a reflection mode.In order to suppress the big disturbance calused by reflection and back scattering,two framnes of speckles are recorded in sequence,and their difference is used for image reconstruction.Our method is immune to both medium motions and object movements.展开更多
In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity...In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.展开更多
Shock-induced separation of turbulent boundary layers represents a long-studied problem in compressible flow, bearing, for example, on applications in high speed aerodynamics, rocketry, wind tunnel design, and turboma...Shock-induced separation of turbulent boundary layers represents a long-studied problem in compressible flow, bearing, for example, on applications in high speed aerodynamics, rocketry, wind tunnel design, and turbomachinery. Experimental investigations have generally sought to expose essential physics using geometrically simple configurations.展开更多
In recent years,the anti-tumor activity of Donglingeao(Rabdosiae Rubescentis Herba)has received much attention.The diterpenoid rubescensine A as its main anti-cancer active component has anti-tumor,anti-bacterial,anti...In recent years,the anti-tumor activity of Donglingeao(Rabdosiae Rubescentis Herba)has received much attention.The diterpenoid rubescensine A as its main anti-cancer active component has anti-tumor,anti-bacterial,anti-inflammatory pharmacological effects.At present,researches on the chemical composition,phar-macological effects and clinical application of Donglingeao(Rabdosiae Rubescentis Herba)have made impor-tant progress.The upstream key enzyme genes have basically been cloned in the biosynthesis pathway of diter-penoids.However,the synthetic route of rubescensine A is not clear,and there are few reports on the cyto-chrome P450 family that regulates the synthesis of rubescensine A.Therefore,it is necessary to further study the key enzyme genes that regulate the synthesis of rubescensine A to provide research basis for the in vitro synthesis of rubescensine A.展开更多
Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and ...Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.展开更多
Background:Malaria is one of the major diseases afecting global health,while progress in malaria control and elimination has stagnated in some endemic countries.China has been certifcated malaria free by World Health ...Background:Malaria is one of the major diseases afecting global health,while progress in malaria control and elimination has stagnated in some endemic countries.China has been certifcated malaria free by World Health Organization in 2021,and will get more involved on global malaria elimination.Further discussion is needed on how to collaborate with the malaria endemic countries and provide efective help.This study was to investigate the perceptions of malaria endemic countries on China’s contribution to global malaria elimination and to lay a foundation for further action.Methods:Semi-structured interviews were conducted with key informants including national malaria project managers and technicians from malaria endemic countries.Thematic framework approach was used to analyze the data.Results:Malaria endemic countries now face challenges in insufcient funds,technique,products,public health systems and inadequacy of international assistance.They hold a positive attitude towards cooperation with China and identifed experience and technique exchange,personnel training,system building and scientifc research cooperation as prioritized areas.Conclusions:China could make full use of its own advantages in technique transfer,health system improvement,information system construction,and health human resource training and take an active part in global malaria elimination.展开更多
In order to curb the soaring house prices,the Chinese govemment has been focusing on macro-control of real estate on the demand side.Among them,the Home Purchase Restriction(HPR)is one of the most commonly used policy...In order to curb the soaring house prices,the Chinese govemment has been focusing on macro-control of real estate on the demand side.Among them,the Home Purchase Restriction(HPR)is one of the most commonly used policy tools,and its influence has atracted the attention from both the public and the academia.Although many scholars have studied the effectiveness of the home purchase restriction policy,there is n0 universal conclusion and the empirical research on the externalities of this policy is scarce.Based on the daily transaction micro-data of the real estate sales market,the rental market and the land market,this paper uses the difference-in-difference model to evaluate the effectiveness of the HPR more accurately,further integrates the relevance of each market into the analytical framework and explores the externalitics of the HPR on the real estate rental market and the land market.The empirical results show that the HPR lowers the house price by 10.12%,which is higher than the estimation results of previous studies;and increases the rent by 25.09%,while decreases the residential land price by 9.08%,with no significant impact on industrial and commercial land prices.A series of robustness tests and counterfactual analysis,such as PSM-DID,all support the reliability of the empirical results.The extemnalities of the HPR indicates that the policy is not conducive to improving the welfare of pcople with the rigid housing demand,and may tigger the"soft resistance"of the local government.Therefore,the govermment should focus on how to promote the supply-side structural reform on the land market and real estate market on the basis of strengthening the local tax system.展开更多
Second-order(χ^((2))) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices.Due to strong photon confnement and long photon lifetime,integrated mic...Second-order(χ^((2))) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices.Due to strong photon confnement and long photon lifetime,integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical efects.However,existing silicon-based materials lack a χ^((2)) response due to their centrosymmetric structures.A variety of novel material platforms possessing χ^((2)) nonlinearity have been developed over the past two decades.This review comprehensively summarizes the progress of second-order nonlinear optical efects in integrated microresonators.First,the basic principles of χ^((2)) nonlinear efects are introduced.Afterward,we highlight the commonly used χ^((2)) nonlinear optical materials,including their material properties and respective functional devices.We also discuss the prospects and challenges of utilizing χ^((2)) nonlinearity in the feld of integrated microcavity photonics.展开更多
With increased cyber attacks over years,information system security assessment becomes more and more important.This paper provides an ontology-based attack model,and then utilizes it to assess the information system s...With increased cyber attacks over years,information system security assessment becomes more and more important.This paper provides an ontology-based attack model,and then utilizes it to assess the information system security from attack angle.We categorize attacks into a taxonomy suitable for security assessment.The proposed taxonomy consists of five dimensions,which include attack impact,attack vector,attack target,vulnerability and defense.Afterwards we build an ontology according to the taxonomy.In the ontology,attack related concepts included in the five dimensions and relationships between them are formalized and analyzed in detail.We also populate our attack ontology with information from national vulnerability database(NVD)about the vulnerabilities,such as common vulnerabilities and exposures(CVE),common weakness enumeration(CWE),common vulnerability scoring system(CVSS),and common platform enumeration(CPE).Finally we propose an ontology-based framework for security assessment of network and computer systems,and describe the utilization of ontology in the security assessment and the method for evaluating attack efect on the system when it is under attack.展开更多
Background:It is of great challenge to raise the public coronavirus disease 2019(COVID-19)related health literacy(CRHL)in impoverished regions due to the limits of poor infrastructure,large proportion of vulnerable gr...Background:It is of great challenge to raise the public coronavirus disease 2019(COVID-19)related health literacy(CRHL)in impoverished regions due to the limits of poor infrastructure,large proportion of vulnerable groups,etc.However,those limits cannot be solved in the short term.Therefore,this study chose Liangshan Yi Autonomous Prefecture,one of the poorest areas in China,as a pilot,to reveal the quantitative relationships among diferent dimensions under the COVID-19 health education framework,clarify the key points for health promotion,and provide specifc suggestions for COVID-19 health education strategy in impoverished regions.Methods:A cross-sectional questionnaire survey was conducted in fve regions of Liangshan Yi Autonomous Prefecture in 2020.There were 2,100 individuals sampled by multi-stage method.This survey mainly measured the four dimensions:CRHL,COVID-19 related tense psychological reactions(CRTPR),COVID-19 related information report acquisition(CRIRA),and general health literacy(GHL).The multivariate logistic regression was used to explore the infuence of demographic characteristics on each dimension.Furthermore,to quantify the relationships among different dimensions,this study employed the structural equation model(SEM),and analyzed the mediating efects of CRHL and CRIRA as well as the moderating efects of regional characteristic variables.Results:The CRHL played an important role in promoting COVID-19 health education,reaching 52.5%in Liangshan Yi Autonomous Prefecture.The GHL(β=0.336)and age(β=0.136)had statistically positive impacts on CRHL.The CRHL afected CRTPR negatively(β=−0.198)and CRIRA positively(β=0.052).The CRHL played signifcant mediating roles among the four dimensions(P<0.05).Efectiveness of government prevention and control as well as the ethnicity moderated not only the relationships between CRHL and other dimensions,but also the mediating efect of CRHL(P<0.05).People with lower income and education levels had lower GHL(β=0.286,1.292).The youth were more likely to show CRTPR(β=−0.080).Conclusions:By proposing and verifying the theoretical framework,this study put forward specifc suggestions on how to improve COVID-19 health education strategies in impoverished regions via implementation methods,key groups and efect evaluation,which also provided references about future public health emergencies for other impoverished regions of the world.展开更多
基金This work was supported by the National Key Research and Development Project(No.2019YFC0605501)the National Science and Technology Major Project(2016ZX05003001).
文摘The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×10^(−3)μm^(2).In order to reveal the characteristics and efectiveness of ultra-deep fractures and their efects on reservoir properties and natural gas production,outcrops,cores,thin section,image logs and production testing data are used to investigate the efectiveness of tectonic fractures in ultra-deep reservoirs in the Kuqa foreland thrust zone,and the corresponding geological signifcance for oil and gas exploration and development are discussed.Tectonic fractures in the thrust belt include EW-trending high-angle tensile fractures and NS-trending vertical shear fractures.The former has a relatively high flling rate,while the latter is mostly unflled.Micro-fractures are usually grain-piercing-through cracks with width of 10-100 microns.In the planar view,the efective fractures are concentrated in the high part and wing zones of the long axis of the anticline,and along the vertical direction,they are mainly found in the tensile fracture zone above the neutral plane.The adjustment fracture zone has the strongest vertical extension abilities and high efectiveness,followed by the nearly EW longitudinal tensile fracture zone,and the netted fracture zone with multiple dip angles.The efectiveness of fracture is mainly controlled by fracture aperture and flling degrees.Efective fractures can increase reservoir permeability by 1-2 orders of magnitude.The higher part of the anticline is associated with high tectonic fracture permeability,which control enrichment and high production of natural gas.The netted vertical open fractures efectively communicate with pores and throats of the reservoir matrix,which forms an apparent-homogenous to medium-heterogeneous body that is seen with high production of natural gas sustained for a long term.
文摘Background:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world,especially in highly populated regions.The healthcare capacity(especially the testing resources,vaccination coverage,and hospital capacity)is becoming extremely insufcient as the demand will far exceed the supply.To address this time-critical issue,we need to answer a key question:How can we efectively infer the daily transmission risks in diferent districts using machine learning methods and thus lay out the corresponding resource prioritization strategies,so as to alleviate the impact of the Omicron outbreaks?Methods:We propose a computational method for future risk mapping and optimal resource allocation based on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant.We collect the publicly available data from the ofcial website of the Hong Kong Special Administrative Region(HKSAR)Government and the study period in this paper is from December 27,2021 to July 17,2022(including a period for future prediction).First,we construct the spatiotemporal transmission intensity matrices across diferent districts based on infection case records.With the constructed cross-district transmission matrices,we forecast the future risks of various locations daily by means of the Gaussian process.Finally,we develop a transmission-guided resource prioritization strategy that enables efective control of Omicron outbreaks under limited capacity.Results:We conduct a comprehensive investigation of risk mapping and resource allocation in Hong Kong,China.The maps of the district-level transmission risks clearly demonstrate the irregular and spatiotemporal varying patterns of the risks,making it difcult for the public health authority to foresee the outbreaks and plan the responses accordingly.With the guidance of the inferred transmission risks,the developed prioritization strategy enables the optimal testing resource allocation for integrative case management(including case detection,quarantine,and further treatment),i.e.,with the 300,000 testing capacity per day;it could reduce the infection peak by 87.1% compared with the population-based allocation strategy(case number reduces from 20,860 to 2689)and by 24.2% compared with the case-based strategy(case number reduces from 3547 to 2689),signifcantly alleviating the burden of the healthcare system.Conclusions:Computationally characterizing spatiotemporal transmission patterns allows for the efective risk mapping and resource prioritization;such adaptive strategies are of critical importance in achieving timely outbreak control under insufcient capacity.The proposed method can help guide public-health responses not only to the Omicron outbreaks but also to the potential future outbreaks caused by other new variants.Moreover,the investigation conducted in Hong Kong,China provides useful suggestions on how to achieve efective disease control with insufcient capacity in other highly populated countries and regions.
基金the Chinese Scholarship Council(Grant No.202206240086)the National Natural Science Foundation of China(Grant No.82170432)programs from Science and Technology Department of Sichuan Province(Grant No.2020YFSY0024).
文摘The incre asing interest in RNA modifications has signifcantly advanced epigenomic and epitranscriptomic technologies.This study focuses on the immuno oncological impact of ALYREF in human cancer through a pan-cancer analysis,enhancing understanding of this gene's role in cancer.We observed differential ALYREF expression between tumor and normal samples,correl ating strongly with prognosis in various cancers,particularly kidney renal papillary cell carcinoma(KIRP)and liver hepatocellular carcinoma(LIHC).ALYREF showed a negative correlation with most tumor-infitrating cells in lung squamous cell carcinoma(LUSC)and lymphoid neoplasm difuse large B-cell lymphoma(DLBC),while positive correlations were noted in IIHC,kidney chromophobe(KICH),mesothelioma(MESO),KIRP,pheochromocytoma and paraganglioma(PARD),and glioma(GBMLGG).Aditionally,ALYREF expression was closely associated with tumor heterogeneity,stemness indices,and a high mutation rate in TP53 across these cancers.In conclusion,ALYREF may serve as an oncogenic biomarker in numerous cancers,meriting further research attention.
文摘Blast pressure measurements of a controlled underwater explosion in the sea were carried out.An explosive of 25-kg trinitro-toluene(TNT)equivalent was detonated,and the blast pressures were recorded by eight diferent high-performance pressure sensors that work at the nonresonant high-voltage output in adverse underwater conditions.Recorded peak pressure values are used to establish a relationship in the well-known form of empirical underwater explosion(UNDEX)loading formula.Constants of the formula are redetermined by employing the least-squares method in two diferent forms for best ftting to the measured data.The newly determined constants are found to be only slightly diferent from the generally accepted ones.
基金funding provided by the National Natural Science Foundation of China(52074108 and 51874124)the Project supported by Fund for Creative Talents of Henan Colleges in China(22HASTIT012)+1 种基金the Key Science and Technology Program of Henan Province(212102310007)It also supported by the Scientifc Research Foundation of the Higher Education Institutions of Henan Province in China(22A620001).
文摘Coal is the one of foundations of energy and economic structure in China,while the unsealing of coal mine fres would cause a great risk of coal re-ignition.In order to explore the infuence of pressure-bearing state on the re-ignition characteristics for residual coal,the uniaxial compression equipped with a temperature-programmed device was built.The scanning electron microscope,synchronous thermal analyzer and Fourier transform infrared absorption spectrometer was applied to investigate the microscopic structure and thermal efect of the coal samples.Moreover,the microscopic efect of uniaxial stress on coal re-ignition is revealed,and the re-ignition mechanism is also obtained.As the uniaxial stress increasing,the number,depth and length of the fractures of the pre-treated coal increases.The application of uniaxial stress causes the thermal conductivity to change periodically,enhances the inhibition of injecting nitrogen on heat transfer and prolonges the duration of oxidation exothermic.The content of oxygen-containing functional groups has a high correlation with apparent activation energy,and coal samples at 6 MPa is more probability to re-ignite while the fre zone is unsealed.Uniaxial stress could control the re-ignition mechanism by changing the structure of fractures and pores.The side chains and functional groups of coal structure are easier to be broken by thermal-stress coupling.The higher the·OH content,the more difcult coal samples would be re-ignited.The research results would lay a solid theoretical foundation for the safe unsealing of closed fre-areas underground,tighten the common bond between the actual industry and the experimental theory in closed fre-areas underground,and provide the theoretical guidance for coal re-ignition preventing.
基金supported by the National Science Foundation of China(51974148)the Liaoning Xingliao Talent Program(XLYC1807130).
文摘Deep rock mass tends to be broken into blocks when mining for materials deep below the surface.The rock layer of the roof of the mine can be regarded as a system of blocks of fractured rock mass.When subjected to high ground stress and mining-induced disturbance,the efect of the ultra-low friction of the block system easily becomes apparent,and can induce rock burst and other accidents.By taking the block of rock mass as research object,this study developed a test system for ultra-low friction to experimentally examine its efects on the broken blocks under stress wave-induced disturbance.We used the horizontal displacement of the working block as the characteristic parameter refecting the efect of ultra-low friction,and examine its characteristic laws of horizontal displacement,acceleration,and energy when subjected to the efects of ultra-low friction by changing the frequency and amplitude of the stress wave-induced disturbance.The results show that the frequency of stress wave-induced disturbance is related to the generation of ultra-low friction in the broken block.The frequency of disturbance of the stress wave is within 1–3 Hz,and signifcantly increases the maximum acceleration and horizontal displacement of the broken blocks.The greater the intensity of the stress wave-induced disturbance is,the higher is the degree of block fragmentation,and the more likely are efects of ultra-low friction to occur between the blocks.The greater the intensity of the horizontal impact load is,the higher is the degree of fragmentation of the rock mass,and the easier it is for the efects of ultra-low friction to occur.Stress wave-induced disturbance and horizontal impact are the main causes of sliding instability of the broken blocks.When the dominant frequency of the kinetic energy of the broken block is within 20 Hz,the efects of ultra-low friction are more likely.
基金Supported by National Natural Science Foundation of China(Grant No.52175377)Chongqing Municipal Science Foundation(Grant No.CSTB2022NSCQ-LZX0080)+1 种基金Fundamental Research Funds for Central Universities(Grant Nos.2023CDJXY-026 and 2023CDJXY-021)National Science and Technology Major Project(Grant No.2017-VII-0002-0095).
文摘The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.
基金Russian Science Foundation Grant No.14-15-00840Pstudying the laser-induced hydrodynamic processes was partly supported by Russian Foundation for Basic Research Grant No.17-02-00832.
文摘The bactericidal effect of laser radiation with a quartz fiber-based transmission system with a strong absorption coating converter against bacteria associated with urological stones has been studied.Gr am-negative rod Escherichia coli and the Gram-positive coccus Staphylococcus epi-dermidis,Staphylococcus aureus,Enterococcus faecalis and Enterococcus faecium were used in this study.Each bacterial species was treated by continuous-wave near infrared laser coupled with bare fiber tip or strongly absorption coating fiber tip.After treatment,the temperature of bacterial suspension was measured.In addition,the temperature dist ribution was analyzed.It has been shown that using laser with a strongly absorption coating fiber tip results in significant bactericidal effect.The decrease of the amount of E.coli and S.epidermidis was 100%after treatment with an output power of6 W of radiation at a wavelength of 0.97 pum for 40s.Number of S.aureus and Ent.facium colony-forming unit was reduced to 70%after same exposure.The peak temperature of bacterial suspension was 86℃ after treatment by laser with a strongly absorption coating fiber tip.Laser with a strongly absorpt ion coating fiber tip provides large scale hydrodynamic flows directed away from the fiber tip.The laser with a strongly absorption coating fiber tip has bactericidal effect.The main role is associated with the effect of high temperature,which,in the form of flow in a liquid medium,afects bacteria.
文摘We observed a phenomenon that different scattering components have different decorrelation time.Based on decorrelation time difference,we proposed a method to image an object hidden behind a turbid medium in a reflection mode.In order to suppress the big disturbance calused by reflection and back scattering,two framnes of speckles are recorded in sequence,and their difference is used for image reconstruction.Our method is immune to both medium motions and object movements.
基金Supported by The National Natural Science Foundation of P.R. China [60764003]The Scientific Research Programmes of Colleges in Xinjiang [XJEDU2007G01, XJEDU2006I05]+1 种基金The National Key Technologies R & D Program of China [2008BAI68B01]The Natural Science Foundation of Jiangxi Province [2008GZS0027]
文摘In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.
文摘Shock-induced separation of turbulent boundary layers represents a long-studied problem in compressible flow, bearing, for example, on applications in high speed aerodynamics, rocketry, wind tunnel design, and turbomachinery. Experimental investigations have generally sought to expose essential physics using geometrically simple configurations.
基金We thank for the funding support from the National Natural Science Foundation of China(00108028)。
文摘In recent years,the anti-tumor activity of Donglingeao(Rabdosiae Rubescentis Herba)has received much attention.The diterpenoid rubescensine A as its main anti-cancer active component has anti-tumor,anti-bacterial,anti-inflammatory pharmacological effects.At present,researches on the chemical composition,phar-macological effects and clinical application of Donglingeao(Rabdosiae Rubescentis Herba)have made impor-tant progress.The upstream key enzyme genes have basically been cloned in the biosynthesis pathway of diter-penoids.However,the synthetic route of rubescensine A is not clear,and there are few reports on the cyto-chrome P450 family that regulates the synthesis of rubescensine A.Therefore,it is necessary to further study the key enzyme genes that regulate the synthesis of rubescensine A to provide research basis for the in vitro synthesis of rubescensine A.
基金National Key R&D Program of China under Grant Nos.2023YFA1606400 and 2022YFA1602303National Natural Science Foundation of China under Grants Nos.12335007,12035001,11921006,12347106,12147101,and 12205340+1 种基金Gansu Natural Science Foundation under Grant No.22JR5RA123U.S.Department of Energy(DOE),Office of Science,under SciDAC-5(NUCLEI collaboration)。
文摘Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.
文摘Background:Malaria is one of the major diseases afecting global health,while progress in malaria control and elimination has stagnated in some endemic countries.China has been certifcated malaria free by World Health Organization in 2021,and will get more involved on global malaria elimination.Further discussion is needed on how to collaborate with the malaria endemic countries and provide efective help.This study was to investigate the perceptions of malaria endemic countries on China’s contribution to global malaria elimination and to lay a foundation for further action.Methods:Semi-structured interviews were conducted with key informants including national malaria project managers and technicians from malaria endemic countries.Thematic framework approach was used to analyze the data.Results:Malaria endemic countries now face challenges in insufcient funds,technique,products,public health systems and inadequacy of international assistance.They hold a positive attitude towards cooperation with China and identifed experience and technique exchange,personnel training,system building and scientifc research cooperation as prioritized areas.Conclusions:China could make full use of its own advantages in technique transfer,health system improvement,information system construction,and health human resource training and take an active part in global malaria elimination.
基金National Social Sciences Fund Project(18ZDA096)National Natural Science Fund Project(71673229)Fujian Natural Science Fund Project(2017J01134).
文摘In order to curb the soaring house prices,the Chinese govemment has been focusing on macro-control of real estate on the demand side.Among them,the Home Purchase Restriction(HPR)is one of the most commonly used policy tools,and its influence has atracted the attention from both the public and the academia.Although many scholars have studied the effectiveness of the home purchase restriction policy,there is n0 universal conclusion and the empirical research on the externalities of this policy is scarce.Based on the daily transaction micro-data of the real estate sales market,the rental market and the land market,this paper uses the difference-in-difference model to evaluate the effectiveness of the HPR more accurately,further integrates the relevance of each market into the analytical framework and explores the externalitics of the HPR on the real estate rental market and the land market.The empirical results show that the HPR lowers the house price by 10.12%,which is higher than the estimation results of previous studies;and increases the rent by 25.09%,while decreases the residential land price by 9.08%,with no significant impact on industrial and commercial land prices.A series of robustness tests and counterfactual analysis,such as PSM-DID,all support the reliability of the empirical results.The extemnalities of the HPR indicates that the policy is not conducive to improving the welfare of pcople with the rigid housing demand,and may tigger the"soft resistance"of the local government.Therefore,the govermment should focus on how to promote the supply-side structural reform on the land market and real estate market on the basis of strengthening the local tax system.
基金the National Key Research and Development Program of China(No.2021YFB2800604)the National Natural Science Foundation of China(Grant Nos.91850115 and 11774110)the State Key Laboratory of Applied Optics(No.SKLAO2021001A10).
文摘Second-order(χ^((2))) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices.Due to strong photon confnement and long photon lifetime,integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical efects.However,existing silicon-based materials lack a χ^((2)) response due to their centrosymmetric structures.A variety of novel material platforms possessing χ^((2)) nonlinearity have been developed over the past two decades.This review comprehensively summarizes the progress of second-order nonlinear optical efects in integrated microresonators.First,the basic principles of χ^((2)) nonlinear efects are introduced.Afterward,we highlight the commonly used χ^((2)) nonlinear optical materials,including their material properties and respective functional devices.We also discuss the prospects and challenges of utilizing χ^((2)) nonlinearity in the feld of integrated microcavity photonics.
基金the National Basic Research Program(973)of China(No.2010CB731403)the Information Network Security Key Laboratory Open Project of the Ministry of Public Security of China(No.C09603)the Shanghai Key Scientific and Technological Project(No.11511504302)
文摘With increased cyber attacks over years,information system security assessment becomes more and more important.This paper provides an ontology-based attack model,and then utilizes it to assess the information system security from attack angle.We categorize attacks into a taxonomy suitable for security assessment.The proposed taxonomy consists of five dimensions,which include attack impact,attack vector,attack target,vulnerability and defense.Afterwards we build an ontology according to the taxonomy.In the ontology,attack related concepts included in the five dimensions and relationships between them are formalized and analyzed in detail.We also populate our attack ontology with information from national vulnerability database(NVD)about the vulnerabilities,such as common vulnerabilities and exposures(CVE),common weakness enumeration(CWE),common vulnerability scoring system(CVSS),and common platform enumeration(CPE).Finally we propose an ontology-based framework for security assessment of network and computer systems,and describe the utilization of ontology in the security assessment and the method for evaluating attack efect on the system when it is under attack.
文摘Background:It is of great challenge to raise the public coronavirus disease 2019(COVID-19)related health literacy(CRHL)in impoverished regions due to the limits of poor infrastructure,large proportion of vulnerable groups,etc.However,those limits cannot be solved in the short term.Therefore,this study chose Liangshan Yi Autonomous Prefecture,one of the poorest areas in China,as a pilot,to reveal the quantitative relationships among diferent dimensions under the COVID-19 health education framework,clarify the key points for health promotion,and provide specifc suggestions for COVID-19 health education strategy in impoverished regions.Methods:A cross-sectional questionnaire survey was conducted in fve regions of Liangshan Yi Autonomous Prefecture in 2020.There were 2,100 individuals sampled by multi-stage method.This survey mainly measured the four dimensions:CRHL,COVID-19 related tense psychological reactions(CRTPR),COVID-19 related information report acquisition(CRIRA),and general health literacy(GHL).The multivariate logistic regression was used to explore the infuence of demographic characteristics on each dimension.Furthermore,to quantify the relationships among different dimensions,this study employed the structural equation model(SEM),and analyzed the mediating efects of CRHL and CRIRA as well as the moderating efects of regional characteristic variables.Results:The CRHL played an important role in promoting COVID-19 health education,reaching 52.5%in Liangshan Yi Autonomous Prefecture.The GHL(β=0.336)and age(β=0.136)had statistically positive impacts on CRHL.The CRHL afected CRTPR negatively(β=−0.198)and CRIRA positively(β=0.052).The CRHL played signifcant mediating roles among the four dimensions(P<0.05).Efectiveness of government prevention and control as well as the ethnicity moderated not only the relationships between CRHL and other dimensions,but also the mediating efect of CRHL(P<0.05).People with lower income and education levels had lower GHL(β=0.286,1.292).The youth were more likely to show CRTPR(β=−0.080).Conclusions:By proposing and verifying the theoretical framework,this study put forward specifc suggestions on how to improve COVID-19 health education strategies in impoverished regions via implementation methods,key groups and efect evaluation,which also provided references about future public health emergencies for other impoverished regions of the world.