Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properti...Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properties of materials.But as for now,limited studies have been done to reveal the underlying electronic structure of this material system,comparing to the huge amount of investigations on the material synthesis.The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena.In pristine CsPbBr_(3),the Fr?hlich polarons associated with the Pb–Br stretching modes are proposed to be responsible for the effective mass renormalization.In this regard,it would be very interesting to explore the electronic structure in doped LHPs.Here,we report high-resolution angle-resolved photoemission spectroscopy(ARPES) studies on both pristine and Cl-doped CsPbBr_(3).The experimental band dispersions are extracted from ARPES spectra along both ■ and ■ high symmetry directions.DFT calculations are performed and directly compared with the ARPES data.Our results have revealed the band structure of Cl-doped CsPbBr_(3) for the first time,which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr_(3) compound.Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength.These results will help understand the physical properties of LHPs as a function of doping.展开更多
The main objective of this study was to investigate the impact of effective mass splitting on heavy-ion-collision observables.We first analyzed correlations between different nuclear matter parameters obtained from 11...The main objective of this study was to investigate the impact of effective mass splitting on heavy-ion-collision observables.We first analyzed correlations between different nuclear matter parameters obtained from 119 effective Skyrme interaction sets.The values of the correlation coefficients illustrate that the magnitude of effective mass splitting is crucial for tight constraints on the symmetry energy via heavy-ion collisions.The^(86)Kr+^(208)Pb system at beam energies ranging from 25 to 200A MeV was simulated within the framework of the improved quantum molecular dynamics model(ImQMD-Sky).Our calculations show that the slopes of the spectra of ln[Y(n)/Y(p)]and ln[Y(t)/Y(^(3)He)],which are the logarithms of the neutron to proton and triton to helium-3 yield ratios,are directly related to effective mass splitting and can be used to probe the effective mass splitting.展开更多
This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to t...This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to two decimal places.Only one of the masses needs to be determined as the electron and hole masses in materials add up to be equal to free electron mass with the hole effective mass being larger than the electron effective mass.The review also convinces the reader that the CBO(conduction band offset)or the Si-SiO2 barrier height at the oxide/silicon interface of a Si MOS(metal-oxide-semiconductor)device is 3.20 eV.展开更多
In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoup...In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.展开更多
The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecu...The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecular dynamics model.Three isotope probes,i.e.,a proton,deuteron,and triton,are used to calculate the nuclear stopping.Compared to the mn*>mp*case,the mn*<mp*parameter results in a stronger stopping for protons but a weaker stopping for tritons.The calculations of the isospin tracer show that the mn*>mp*parameter results in a higher isospin mix than the mn*<mp*parameter.The rapidity and impact parameter dependences of the isospin tracer are also studied.A constraining of the effective mass splitting using the free nucleons with high rapidity and in a central rather than peripheral collision is suggested.展开更多
Within the frame of a novel treatment we make a complete mathematical analysis of exactly solvable onedimensional quantum systems with non-constant mass, involving their ordering ambiguities. This work extends the res...Within the frame of a novel treatment we make a complete mathematical analysis of exactly solvable onedimensional quantum systems with non-constant mass, involving their ordering ambiguities. This work extends the results recently reported in the literature and clarifies the relation between physically acceptable effective mass Hamiltonians.展开更多
In this paper,we perform two-layer high-throughput calculations.In the first layer,which involves changing the crystal structure and/or chemical composition,we analyze selected Ⅲ-Ⅴ semiconductors,filled and unfilled...In this paper,we perform two-layer high-throughput calculations.In the first layer,which involves changing the crystal structure and/or chemical composition,we analyze selected Ⅲ-Ⅴ semiconductors,filled and unfilled skutterudites,as well as rock salt and layered chalcogenides.The second layer searches the full Brillouin zone(BZ)for critical points within 1.5 eV(1 eV=1.602176×10^(-19)J)of the Fermi level and characterizes those points by computing the effective masses.We introduce several methods to compute the effective masses from first principles and compare them to each other.Our approach also includes the calculation of the density-of-states effective masses for warped critical points,where traditional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical point.We demonstrate the need to consider the band structure in its full complexity and the value of complementary approaches to compute the effective masses.We also provide computational evidence that warping occurs only in the presence of degeneracies.展开更多
In this paper, two novel semiclassical methods including the standard and supersymmetric WKB quantization conditions are suggested to discuss the Schroedinger equation with position-dependent effective mass. From a pr...In this paper, two novel semiclassical methods including the standard and supersymmetric WKB quantization conditions are suggested to discuss the Schroedinger equation with position-dependent effective mass. From a proper coordinate transformation, the formalism of the Schroedinger equation with position-dependent effective mass is mapped into isospectral one with constant mass and therefore for a given mass distribution and physical potential function the bound state energy spectrum can be determined easily by above method associated with a simple integral formula. It is shown that our method can give the analytical results for some exactly-solvable quantum systems.展开更多
After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitti...After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.展开更多
We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneou...We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schr6dinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given.展开更多
The concept of the effective mass in crystals shows that the electron mass is affected by the crystal field and was experimentally verified. A useful expression for effective mass was obtained. Unfortunately this expr...The concept of the effective mass in crystals shows that the electron mass is affected by the crystal field and was experimentally verified. A useful expression for effective mass was obtained. Unfortunately this expression showed that the effective mass vanishes in the ab-sence of the external field. This is in conflict with observations which show that it reduces to the ordinary mass. To cure this defect a new model is developed assuming the existence of vacuum force as verified experimentally as shown by Casimir effect. Using Newton’s second law and the quantum expression of momentum, useful expressions were found. The same expression was found using generalized special relativity. Strikingly the three models reduced to the conventional one in the absence of vacuum, they also reduced to the ordinary electron mass in the absence of all forces.展开更多
Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4...Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4<sup>th</sup> power, we will discuss candidates for entry into this, assuming for a start that initial universe conditions are similar to a black hole, i.e. a nearly singular start to inflationary expansion;this would necessitate a HUGE initial degree of freedom value as outlined in our argument.展开更多
Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties. We propose to reduce the electrical sizes of metamaterials down to more ...Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties. We propose to reduce the electrical sizes of metamaterials down to more sub-wavelength scales by lowering the plasma frequencies of metallic wires. The theoretical model is firstly established by analyzing the plasma frequency of continuous thin wires. By introducing more inductance elements, the effective electron mass can be enhanced drastically, leading to significantly lowered plasma frequencies. Based on this theory, we demonstrate that both the electric and the magnetic plasma frequencies of metamaterials can be lowered significantly and thus the electrical sizes of metamaterials can be reduced to more sub-wavelength scales. This provides an efficient route to deep sub-wavelength metamaterials and will give rigorous impetus for the further development of practical metamaterials.展开更多
AgBi_(3)S_(5) is a new n-type thermoelectric material that is environmentally friendly and composed of elements of earth-abundant,non-toxic and high performance-cost ratio.This compound features an intrinsically low t...AgBi_(3)S_(5) is a new n-type thermoelectric material that is environmentally friendly and composed of elements of earth-abundant,non-toxic and high performance-cost ratio.This compound features an intrinsically low thermal conductivity derived from its complex monoclinic structure.However,the terrible electrical transport properties greatly limited the improvement of thermoelectric performance.Most previous studies considered that carrier concentration is the main reason for low electrical conductivity and focused on improving carrier concentration by aliovalent ion doping.In this work,we found that the critical parameter that restricts the electric transport performance of AgBi_(3)S_(5)was the extremely low carrier mobility instead of the carrier concentration.According to the Pisarenko relationships and density functional theory calculations,Nb doping can sharpen the conduction band of AgBi_(3)S_(5),which contributes to reducing the effective mass and improving the carrier mobility.With a further increase of the Nb doping content,the conduction band convergence can enlarge the effective mass and preserve the carrier mobility.Combined with the decrease in lattice thermal conductivity due to the intensive phone scattering,a maximum ZT value of~0.50 at 773 K was achieved in Ag_(0.97)Nb_(0.03)Bi_(3)S_(5),which was~109.6%higher than that of pure AgBi3S5.This work will stimulate the new exploration of high-performance thermoelectric materials in ternary metal sulfides.展开更多
From a Bayesian analysis of the electric dipole polarizability,the constrained energy of isovector giant dipole resonance,the peak energy of isocalar giant quadrupole resonance,and the constrained energy of isocalar g...From a Bayesian analysis of the electric dipole polarizability,the constrained energy of isovector giant dipole resonance,the peak energy of isocalar giant quadrupole resonance,and the constrained energy of isocalar gi-ant monopole resonance in 208Pb,we extract the isoscalar and isovector effective masses in nuclear matter at satura-tion density ρ0 as m^(*)_(s.0)/m=0.87^(+)_(-004) and m^(*)_(v.0)/m=0.78^(+006)_(-006),respectively,at 90%confdence level.The con-straints obtained on m^(*)_(d.0) and m^(*)_(v.0) lead to a positive isospin splitting of nucleon effective mass in asymmetric nuclear matter of isospin asymmetry σ at ρ0 as m^(*)_(n-p)/m=(0.20^(0.15)_(0.14)σ.In addition,the symmetry energy at the subsatura-tion density ρ^(*)=0.05 fm^(-3) is determined to be E_(sym)(ρ^(*))=16.7±1.3 MeV at 90%confidence level.展开更多
Known as a weak topological insulator(TI),BiSe structurally exhibits alternating stacks of quantum spin Hall bilayer("Bi_(2)")and three-dimensional TI layer("Bi_(2)Se_(3)").The low lattice thermal ...Known as a weak topological insulator(TI),BiSe structurally exhibits alternating stacks of quantum spin Hall bilayer("Bi_(2)")and three-dimensional TI layer("Bi_(2)Se_(3)").The low lattice thermal conductivity of BiSe due to the presence of Bi2 bilayers promises potentially good thermoelectric performance.Herein,the thermoelectric properties of nominal Bi_(1-x)Cu_(x)Se samples were studied as the functions of the content of Cu additive and temperature.It is found that Cu additives in BiSe(1)profoundly affect the texture of densified polycrystalline samples by inclining the crystallographic c-axis parallel toward the pressure direction in the densification process,(2)increase considerably the effective mass and thus the Seebeck coefficient,and(3)yield point defects and Cu-Se secondary phases that effectively scatter heat-carrying phonons.As a result,the optimized electrical and thermal properties yield a thermoelectric figure of merit of zT~0.29 in Bi_(1-x)Cu_(x)Se(x=0.03)sample at 467 K in parallel to the pressure direction and a zT~0.20 at 468 K in the perpendicular direction.展开更多
It has been proved that the thermoelectric performance of p-type SnSe crystals can be optimized through enhancing carrier concentration.The calculations of electronic band structure elucidate that this approach can be...It has been proved that the thermoelectric performance of p-type SnSe crystals can be optimized through enhancing carrier concentration.The calculations of electronic band structure elucidate that this approach can be interpreted by including multiple valence bands.To better estimate the potential performance,we proposed the transport properties for p-type SnSe crystals and analyzed the weighted mobility from the experimental results.The weighted mobility approaches~600 cm^(2)V1s1 when the carrier concentration is as high as~6.31019 cm3.Combined with obtained lattice thermal conductivity,through rising carrier concentration,the quality factor B possesses significant improvements of~235%and 138%at 300 K and 773 K,respectively.Through comparing weighted mobility and Hall mobility,two effective mass values~0.9 me and 1.8 me can be derived using carrier concentrations.It is expected that the ZT~1.0 at 300K and ZT~2.9 at 773 K can be obtained when the carrier concentration of~8.01019 cm3 and the effective mass~1.8 me were selected.This work provides an alternative way to comprehend the performance optimization in thermoelectric community.展开更多
Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable car...Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable carrier mobility) and optoelectronic(because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2(M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.展开更多
Possessing inherently low thermal conductivity,BiSbSe_(3) is a promising thermoelectric material for medium temperature.Therefore,to substantially optimize the thermoelectric performance of BiSbSe_(3),researchers main...Possessing inherently low thermal conductivity,BiSbSe_(3) is a promising thermoelectric material for medium temperature.Therefore,to substantially optimize the thermoelectric performance of BiSbSe_(3),researchers mainly focus on the strategies to improve its electrical transport properties.Among these strongly coupled thermoelectric parameters,carrier concentration and effective mass are two intrinsic variables to decisively affect the electrical transport properties.In this work,Cl as a donor dopant is effective to provide extra electrons in n-type BiSbSe_(3),and the carrier concentration and effective mass can be well optimized simultaneously with increasing Cl content owing to the multiple conduction bands in BiSbSe_(3).What’s more,maximum weighted mobility~53 cm^(2)V^(-1)s^(-1)is obtained in Cl-doped BiSbSe_(3),which contributes to a largely enhanced power factor~4.8μW cm^(-1)K^(-2)at room temperature and outperforms other halogen-doped BiSbSe_(3) samples.Finally,combining the significantly enhanced power factor and maintained low thermal conductivity,a maximum ZT~1.0 is achieved in Cl-doped BiSbSe_(3) at 800 K.展开更多
The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functiona...The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functional within the densityfunctional theory. Most importantly, the effects of the spin–orbit coupling(SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center.SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr_2S_4. These should be useful to deeply understand spinel CdCr_2S_4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.展开更多
基金Project supported by the International Partnership Program of the Chinese Academy of Sciences(Grant No.123GJHZ2022035MI)the Fundamental Research Funds for the Central Universities(Grant Nos.WK3510000015 and WK3510000012)。
文摘Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properties of materials.But as for now,limited studies have been done to reveal the underlying electronic structure of this material system,comparing to the huge amount of investigations on the material synthesis.The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena.In pristine CsPbBr_(3),the Fr?hlich polarons associated with the Pb–Br stretching modes are proposed to be responsible for the effective mass renormalization.In this regard,it would be very interesting to explore the electronic structure in doped LHPs.Here,we report high-resolution angle-resolved photoemission spectroscopy(ARPES) studies on both pristine and Cl-doped CsPbBr_(3).The experimental band dispersions are extracted from ARPES spectra along both ■ and ■ high symmetry directions.DFT calculations are performed and directly compared with the ARPES data.Our results have revealed the band structure of Cl-doped CsPbBr_(3) for the first time,which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr_(3) compound.Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength.These results will help understand the physical properties of LHPs as a function of doping.
基金supported by the National Natural Science Foundation of China(Nos.12275359,11875323,11961141003,U2032145,11890712)the National Key R&D Program of China(No.2018YFA0404404)+1 种基金the Continuous Basic Scientific Research Project(Nos.WDJC-2019-13 and BJ20002501)funding from the China Institute of Atomic Energy(No.YZ222407001301).
文摘The main objective of this study was to investigate the impact of effective mass splitting on heavy-ion-collision observables.We first analyzed correlations between different nuclear matter parameters obtained from 119 effective Skyrme interaction sets.The values of the correlation coefficients illustrate that the magnitude of effective mass splitting is crucial for tight constraints on the symmetry energy via heavy-ion collisions.The^(86)Kr+^(208)Pb system at beam energies ranging from 25 to 200A MeV was simulated within the framework of the improved quantum molecular dynamics model(ImQMD-Sky).Our calculations show that the slopes of the spectra of ln[Y(n)/Y(p)]and ln[Y(t)/Y(^(3)He)],which are the logarithms of the neutron to proton and triton to helium-3 yield ratios,are directly related to effective mass splitting and can be used to probe the effective mass splitting.
文摘This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to two decimal places.Only one of the masses needs to be determined as the electron and hole masses in materials add up to be equal to free electron mass with the hole effective mass being larger than the electron effective mass.The review also convinces the reader that the CBO(conduction band offset)or the Si-SiO2 barrier height at the oxide/silicon interface of a Si MOS(metal-oxide-semiconductor)device is 3.20 eV.
基金National Natural Science Foundation of China under Grant No.10347004
文摘In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.
基金the National Natural Science Foundation of China(Nos.11905018 and 11875328)the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province,China(No.2019L0908)。
文摘The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecular dynamics model.Three isotope probes,i.e.,a proton,deuteron,and triton,are used to calculate the nuclear stopping.Compared to the mn*>mp*case,the mn*<mp*parameter results in a stronger stopping for protons but a weaker stopping for tritons.The calculations of the isospin tracer show that the mn*>mp*parameter results in a higher isospin mix than the mn*<mp*parameter.The rapidity and impact parameter dependences of the isospin tracer are also studied.A constraining of the effective mass splitting using the free nucleons with high rapidity and in a central rather than peripheral collision is suggested.
文摘Within the frame of a novel treatment we make a complete mathematical analysis of exactly solvable onedimensional quantum systems with non-constant mass, involving their ordering ambiguities. This work extends the results recently reported in the literature and clarifies the relation between physically acceptable effective mass Hamiltonians.
基金financial support from the Vitreous State Laboratory。
文摘In this paper,we perform two-layer high-throughput calculations.In the first layer,which involves changing the crystal structure and/or chemical composition,we analyze selected Ⅲ-Ⅴ semiconductors,filled and unfilled skutterudites,as well as rock salt and layered chalcogenides.The second layer searches the full Brillouin zone(BZ)for critical points within 1.5 eV(1 eV=1.602176×10^(-19)J)of the Fermi level and characterizes those points by computing the effective masses.We introduce several methods to compute the effective masses from first principles and compare them to each other.Our approach also includes the calculation of the density-of-states effective masses for warped critical points,where traditional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical point.We demonstrate the need to consider the band structure in its full complexity and the value of complementary approaches to compute the effective masses.We also provide computational evidence that warping occurs only in the presence of degeneracies.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y605037 .
文摘In this paper, two novel semiclassical methods including the standard and supersymmetric WKB quantization conditions are suggested to discuss the Schroedinger equation with position-dependent effective mass. From a proper coordinate transformation, the formalism of the Schroedinger equation with position-dependent effective mass is mapped into isospectral one with constant mass and therefore for a given mass distribution and physical potential function the bound state energy spectrum can be determined easily by above method associated with a simple integral formula. It is shown that our method can give the analytical results for some exactly-solvable quantum systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60976068 and 60936005)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 78083)
文摘After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.
基金Supported by the National Natural Science Foundation of China under Grant No 11275100the K.C.Wong Magna Foundation of Ningbo University
文摘We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schr6dinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given.
文摘The concept of the effective mass in crystals shows that the electron mass is affected by the crystal field and was experimentally verified. A useful expression for effective mass was obtained. Unfortunately this expression showed that the effective mass vanishes in the ab-sence of the external field. This is in conflict with observations which show that it reduces to the ordinary mass. To cure this defect a new model is developed assuming the existence of vacuum force as verified experimentally as shown by Casimir effect. Using Newton’s second law and the quantum expression of momentum, useful expressions were found. The same expression was found using generalized special relativity. Strikingly the three models reduced to the conventional one in the absence of vacuum, they also reduced to the ordinary electron mass in the absence of all forces.
文摘Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4<sup>th</sup> power, we will discuss candidates for entry into this, assuming for a start that initial universe conditions are similar to a black hole, i.e. a nearly singular start to inflationary expansion;this would necessitate a HUGE initial degree of freedom value as outlined in our argument.
基金supported by the National Natural Science Foundation of China(Grants Nos.11204378 and 11274389)the Natural Science Foundation of Shaanxi Province,China(Grant No.2011JQ8031)
文摘Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties. We propose to reduce the electrical sizes of metamaterials down to more sub-wavelength scales by lowering the plasma frequencies of metallic wires. The theoretical model is firstly established by analyzing the plasma frequency of continuous thin wires. By introducing more inductance elements, the effective electron mass can be enhanced drastically, leading to significantly lowered plasma frequencies. Based on this theory, we demonstrate that both the electric and the magnetic plasma frequencies of metamaterials can be lowered significantly and thus the electrical sizes of metamaterials can be reduced to more sub-wavelength scales. This provides an efficient route to deep sub-wavelength metamaterials and will give rigorous impetus for the further development of practical metamaterials.
基金supported by the National Natural Science Foundation of China(No.52102234 and 51972094),High-level Talents Research Initiation Project of Hebei University(No.521000981421 and 521000981332)and Hebei Province Introduced Overseas Students Funding Project(C20210313).Chen M appreciates the support of the Nature Science Foundation of Hebei Province(A2017201104),and the Natural Science Foundation of Educational Department of Hebei Province(QN2020156).
文摘AgBi_(3)S_(5) is a new n-type thermoelectric material that is environmentally friendly and composed of elements of earth-abundant,non-toxic and high performance-cost ratio.This compound features an intrinsically low thermal conductivity derived from its complex monoclinic structure.However,the terrible electrical transport properties greatly limited the improvement of thermoelectric performance.Most previous studies considered that carrier concentration is the main reason for low electrical conductivity and focused on improving carrier concentration by aliovalent ion doping.In this work,we found that the critical parameter that restricts the electric transport performance of AgBi_(3)S_(5)was the extremely low carrier mobility instead of the carrier concentration.According to the Pisarenko relationships and density functional theory calculations,Nb doping can sharpen the conduction band of AgBi_(3)S_(5),which contributes to reducing the effective mass and improving the carrier mobility.With a further increase of the Nb doping content,the conduction band convergence can enlarge the effective mass and preserve the carrier mobility.Combined with the decrease in lattice thermal conductivity due to the intensive phone scattering,a maximum ZT value of~0.50 at 773 K was achieved in Ag_(0.97)Nb_(0.03)Bi_(3)S_(5),which was~109.6%higher than that of pure AgBi3S5.This work will stimulate the new exploration of high-performance thermoelectric materials in ternary metal sulfides.
基金Supported in part by the National Natural Science Foundation of China(11905302,11625521)National SKA Program of China(2020SKA0120300)。
文摘From a Bayesian analysis of the electric dipole polarizability,the constrained energy of isovector giant dipole resonance,the peak energy of isocalar giant quadrupole resonance,and the constrained energy of isocalar gi-ant monopole resonance in 208Pb,we extract the isoscalar and isovector effective masses in nuclear matter at satura-tion density ρ0 as m^(*)_(s.0)/m=0.87^(+)_(-004) and m^(*)_(v.0)/m=0.78^(+006)_(-006),respectively,at 90%confdence level.The con-straints obtained on m^(*)_(d.0) and m^(*)_(v.0) lead to a positive isospin splitting of nucleon effective mass in asymmetric nuclear matter of isospin asymmetry σ at ρ0 as m^(*)_(n-p)/m=(0.20^(0.15)_(0.14)σ.In addition,the symmetry energy at the subsatura-tion density ρ^(*)=0.05 fm^(-3) is determined to be E_(sym)(ρ^(*))=16.7±1.3 MeV at 90%confidence level.
基金the Graduate Scientific Research and Innovation Foundation of Chongqing,China(No.CYB 19064)the National Natural Science Foundation of China(Nos.51772035,11674040,51472036 and 51672270)+4 种基金the Fundamental Research Funds for the Central Universities(No.106112017CDJQJ308821)the Key Research Program of Frontier Sciences,CAS(No.QYZDB-SSW-SLH016)the CSC Scholarship(No.201806050180)2019 ITS Summer Fellowship,the Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxmX0554)the Starting Research Fund from Chongqing University。
文摘Known as a weak topological insulator(TI),BiSe structurally exhibits alternating stacks of quantum spin Hall bilayer("Bi_(2)")and three-dimensional TI layer("Bi_(2)Se_(3)").The low lattice thermal conductivity of BiSe due to the presence of Bi2 bilayers promises potentially good thermoelectric performance.Herein,the thermoelectric properties of nominal Bi_(1-x)Cu_(x)Se samples were studied as the functions of the content of Cu additive and temperature.It is found that Cu additives in BiSe(1)profoundly affect the texture of densified polycrystalline samples by inclining the crystallographic c-axis parallel toward the pressure direction in the densification process,(2)increase considerably the effective mass and thus the Seebeck coefficient,and(3)yield point defects and Cu-Se secondary phases that effectively scatter heat-carrying phonons.As a result,the optimized electrical and thermal properties yield a thermoelectric figure of merit of zT~0.29 in Bi_(1-x)Cu_(x)Se(x=0.03)sample at 467 K in parallel to the pressure direction and a zT~0.20 at 468 K in the perpendicular direction.
基金the National Key Research and Development Program of China(2018YFA0702100 and 2018YFB0703600)the National Natural Science Foundation of China(51632005 and 51772012)+2 种基金the Beijing Natural Science Foundation(JQ18004)the Shenzhen Peacock Plan team(KQTD2016022619565991)111 Project(B17002).L.D.Z.thanks for the support from the National Science Fund for Distinguished Young Scholars(51925101).
文摘It has been proved that the thermoelectric performance of p-type SnSe crystals can be optimized through enhancing carrier concentration.The calculations of electronic band structure elucidate that this approach can be interpreted by including multiple valence bands.To better estimate the potential performance,we proposed the transport properties for p-type SnSe crystals and analyzed the weighted mobility from the experimental results.The weighted mobility approaches~600 cm^(2)V1s1 when the carrier concentration is as high as~6.31019 cm3.Combined with obtained lattice thermal conductivity,through rising carrier concentration,the quality factor B possesses significant improvements of~235%and 138%at 300 K and 773 K,respectively.Through comparing weighted mobility and Hall mobility,two effective mass values~0.9 me and 1.8 me can be derived using carrier concentrations.It is expected that the ZT~1.0 at 300K and ZT~2.9 at 773 K can be obtained when the carrier concentration of~8.01019 cm3 and the effective mass~1.8 me were selected.This work provides an alternative way to comprehend the performance optimization in thermoelectric community.
基金Project supported by the National Natural Science Foundation of China(Nos.11404131,11674121)the Program for JLU Science and Technology Innovative Research Teamthe Special Fund for Talent Exploitation in Jilin Province of China
文摘Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable carrier mobility) and optoelectronic(because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2(M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.
基金supported financially by the National Natural Science Foundation of China(Nos.51772012 and 51671015)the National Key Research and Development Program of China(Nos.2018YFB0703600 and 2018YFA0702100)+5 种基金the Beijing Natural Science Foundation(No.JQ18004)the Shenzhen Peacock Plan Team(No.KQTD2016022619565991)111 Project(No.B17002)financial support from Postdoctoral Science Foundation of China(No.2019M660399)the National Postdoctoral Program for Innovative Talents(No.BX20190028)support from the National Science Fund for Distinguished Young Scholars(No.51925101)。
文摘Possessing inherently low thermal conductivity,BiSbSe_(3) is a promising thermoelectric material for medium temperature.Therefore,to substantially optimize the thermoelectric performance of BiSbSe_(3),researchers mainly focus on the strategies to improve its electrical transport properties.Among these strongly coupled thermoelectric parameters,carrier concentration and effective mass are two intrinsic variables to decisively affect the electrical transport properties.In this work,Cl as a donor dopant is effective to provide extra electrons in n-type BiSbSe_(3),and the carrier concentration and effective mass can be well optimized simultaneously with increasing Cl content owing to the multiple conduction bands in BiSbSe_(3).What’s more,maximum weighted mobility~53 cm^(2)V^(-1)s^(-1)is obtained in Cl-doped BiSbSe_(3),which contributes to a largely enhanced power factor~4.8μW cm^(-1)K^(-2)at room temperature and outperforms other halogen-doped BiSbSe_(3) samples.Finally,combining the significantly enhanced power factor and maintained low thermal conductivity,a maximum ZT~1.0 is achieved in Cl-doped BiSbSe_(3) at 800 K.
基金Project supported by the Joint Fund of the National Natural Science Foundation of Chinathe China Academy of Engineering Physics(Grant Nos.U1430117and U1230201)
文摘The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functional within the densityfunctional theory. Most importantly, the effects of the spin–orbit coupling(SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center.SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr_2S_4. These should be useful to deeply understand spinel CdCr_2S_4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.