In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Ope...In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent of the object’s representation including parameterization, spatial position and orientation. Several works have shown that these eigenfunctions provide topological and geometrical information of the surfaces of interest [1] [2]. We propose to make use of that information for the construction of a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the surface of interest. The main goal is to develop a classification system based on these skeletons, instead of the surfaces, for the analysis of medical images, for instance.展开更多
We consider the following eigenvalue problem: [GRAPHICS] Where f(x, t) is a continuous function with critical growth. We prove the existence of nontrivial solutions.
The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformation model, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstat...The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformation model, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstates of a quantum integrable system is studied with the help of generalized Brillouin?Wigner perturbation theory. The results show that a significant randomness in this distribution can be observed when its classical counterpart is under the strong chaotic condition. The averaged shape of the eigenfunctions fits with the Gaussian distribution only when the effects of the symmetry have been removed.展开更多
The fully developed slip flow in an annular sector duct is solved by expansions of eigenfunctions in the radial direction and boundary collocation on the straight sides. The method is efficient and accurate. The flow ...The fully developed slip flow in an annular sector duct is solved by expansions of eigenfunctions in the radial direction and boundary collocation on the straight sides. The method is efficient and accurate. The flow field for slip flow differs much from that of no-slip flow. The Poiseuille number increases with increased inner radius, opening angle, and decreases with slip.展开更多
Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurati...Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurations are considered, one in which a short-wave limit approximation is used, and another in which a long-wave limit approximation is used. In the short-wave limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the eigenvalues, and the eigenfunctions are approximated in terms of Green’s functions. The procedure consists of transforming the Orr-Sommerfeld equation into a system of two second order ordinary differential equations for which the eigenvalues and the eigenfunctions can be approximated. In the long-wave limit approximation, solutions are expressed in terms of generalized hypergeometric functions. Our procedure works regardless of the values of the Reynolds number.展开更多
In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are mot...In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are motivated by physical problems including the determination of the extremum of the fundamental vibration frequency and the localization of the vibration displacement.We demonstrate how an iterative rearrangement approach and a gradient descent approach with projection can successfully solve these optimization problems under different boundary conditions with different densities given.展开更多
文摘In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent of the object’s representation including parameterization, spatial position and orientation. Several works have shown that these eigenfunctions provide topological and geometrical information of the surfaces of interest [1] [2]. We propose to make use of that information for the construction of a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the surface of interest. The main goal is to develop a classification system based on these skeletons, instead of the surfaces, for the analysis of medical images, for instance.
文摘We consider the following eigenvalue problem: [GRAPHICS] Where f(x, t) is a continuous function with critical growth. We prove the existence of nontrivial solutions.
文摘The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformation model, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstates of a quantum integrable system is studied with the help of generalized Brillouin?Wigner perturbation theory. The results show that a significant randomness in this distribution can be observed when its classical counterpart is under the strong chaotic condition. The averaged shape of the eigenfunctions fits with the Gaussian distribution only when the effects of the symmetry have been removed.
文摘The fully developed slip flow in an annular sector duct is solved by expansions of eigenfunctions in the radial direction and boundary collocation on the straight sides. The method is efficient and accurate. The flow field for slip flow differs much from that of no-slip flow. The Poiseuille number increases with increased inner radius, opening angle, and decreases with slip.
文摘Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurations are considered, one in which a short-wave limit approximation is used, and another in which a long-wave limit approximation is used. In the short-wave limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the eigenvalues, and the eigenfunctions are approximated in terms of Green’s functions. The procedure consists of transforming the Orr-Sommerfeld equation into a system of two second order ordinary differential equations for which the eigenvalues and the eigenfunctions can be approximated. In the long-wave limit approximation, solutions are expressed in terms of generalized hypergeometric functions. Our procedure works regardless of the values of the Reynolds number.
基金supported by the DMS-1853701supported in part by the DMS-2208373.
文摘In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are motivated by physical problems including the determination of the extremum of the fundamental vibration frequency and the localization of the vibration displacement.We demonstrate how an iterative rearrangement approach and a gradient descent approach with projection can successfully solve these optimization problems under different boundary conditions with different densities given.