The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identi...The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.展开更多
The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational m...The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.展开更多
探讨了一种压电智能结构的设计方法,包括动力学建模、控制器设计和闭环系统有限元仿真。首先采用有限元方法计算滤过白噪声激励下压电智能结构的响应,以此响应作为系统辨识方法的输入,采用基于观测器/K a lm an滤波器的系统辨识方法(O b...探讨了一种压电智能结构的设计方法,包括动力学建模、控制器设计和闭环系统有限元仿真。首先采用有限元方法计算滤过白噪声激励下压电智能结构的响应,以此响应作为系统辨识方法的输入,采用基于观测器/K a lm an滤波器的系统辨识方法(O bserver/K a lm an filter iden tification,OK ID)得到系统的M arkov参数,亦即单位脉冲响应的采样值,然后采用特征系统实现算法(E igensystem R ea lization A lgorithm,ERA)得到系统的最小实现,基于此模型采用LQG优化算法设计鲁棒控制器,并将反馈控制引入有限元模型进行闭环系统仿真,根据仿真结果评价设计方案。此方法克服了有限元模型无法直接用于控制器设计的缺点,通过将反馈控制引入有限元模型,可用有限元方法研究控制器的性能,也适用于设计其它复杂智能结构。展开更多
文摘The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.
基金supported in part by the National Basic Research Program of China (No. JCKY2016203B032)
文摘The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.
文摘探讨了一种压电智能结构的设计方法,包括动力学建模、控制器设计和闭环系统有限元仿真。首先采用有限元方法计算滤过白噪声激励下压电智能结构的响应,以此响应作为系统辨识方法的输入,采用基于观测器/K a lm an滤波器的系统辨识方法(O bserver/K a lm an filter iden tification,OK ID)得到系统的M arkov参数,亦即单位脉冲响应的采样值,然后采用特征系统实现算法(E igensystem R ea lization A lgorithm,ERA)得到系统的最小实现,基于此模型采用LQG优化算法设计鲁棒控制器,并将反馈控制引入有限元模型进行闭环系统仿真,根据仿真结果评价设计方案。此方法克服了有限元模型无法直接用于控制器设计的缺点,通过将反馈控制引入有限元模型,可用有限元方法研究控制器的性能,也适用于设计其它复杂智能结构。