The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field dis...The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future.展开更多
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e...The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.展开更多
The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not o...The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not only electric contact,but also intrinsic defects,especially grown-in twin boundaries.Here,the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a{111}–{111}twin plane using the Pockels electro-optic effect.The results of laser beam induced current pulses are also obtained by the transient current technique,and we discuss the influence of the twin boundary on the electric field evolution.These studies reveal a significant distortion of the electric field,which is attributed to the buildup of space charges at twin boundaries.Also,the position of these space charge regions depends on the polarity of the detector bias.An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results.展开更多
Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distr...Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification...The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.展开更多
A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface po...A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.展开更多
An analytical model of the electric field distributions of buried superjunction structures,based on the charge superposition method and Green's function approach,is derived.An accurate approximation of the exact anal...An analytical model of the electric field distributions of buried superjunction structures,based on the charge superposition method and Green's function approach,is derived.An accurate approximation of the exact analytical model of the vertical electric field is also proposed and demonstrated by numerical simulation.The influence of the dimension and doping concentration of each layer on the electric field is discussed in detail,and the breakdown voltage is demonstrated by simulations.展开更多
Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of t...Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional(quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas(2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field(PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm^2/(V·s)(sample a), 1307.4 cm^2/(V·s)(sample b),1561.7 cm^2/(V s)(sample c) and 678.1 cm^2/(V·s)(sample d), respectively. When the 2DEG sheet density is modulated by the drain–source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the2 DEG sheet density.展开更多
A model of magnetic stimulation is presented for analysis of the spatial distributions of the electric field induced by magnetic coils.Dimensionless analysis is introduced and makes the factors influencing the magnitu...A model of magnetic stimulation is presented for analysis of the spatial distributions of the electric field induced by magnetic coils.Dimensionless analysis is introduced and makes the factors influencing the magnitude of electric field into two parts:c (represents the stimulation conditions),and E 0 (reflects the geometry of coil).By 3 D simulation of the induced electric field of two kinds of coils,the effect of magnetic stimulation can be demonstrated and the factors influencing stimulating focality and depth are identified.The principles for determining the electric field magnitude,focality and magnetic stimulation depth when designing a reasonable coil and stimulator and achieving ideal stimulating effect are discussed.展开更多
We have investigated the distribution of the electric field in p-i-n GaN avalanche photodiodes under different reverse bias values. type and separate absorption and multiplication (SAM) type We have also analyzed th...We have investigated the distribution of the electric field in p-i-n GaN avalanche photodiodes under different reverse bias values. type and separate absorption and multiplication (SAM) type We have also analyzed the influences of the parameters of each layer, including width and concentration, on the distribution of the electric field, especially on the breakdown voltage. It is found that a relatively high concentration of p-GaN (higher than 1×10^18 cm-3) and low cartier concentration of i-GaN (lower than 5×1016 cm-3) are helpful to restrict the electric field and reduce the breakdown voltage. In a SAM (p-i-n-i-n) structure, a suitable choice should be made for the concentration and thickness of the intermediate n-GaN layer in order to decrease breakdown voltage and prevent the device from degenerating into a p-i-n structure. Finally, the optimized material parameters of each layer are proposed.展开更多
A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prep...A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.展开更多
Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the pr...Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.展开更多
A new coaxial pulsed plasma thruster (PPT) laboratory model is designed and employed in this study. A Teflon sleeve is connected with the anode, which is shaped as a nozzle, and a cathode is mounted in the cavity of...A new coaxial pulsed plasma thruster (PPT) laboratory model is designed and employed in this study. A Teflon sleeve is connected with the anode, which is shaped as a nozzle, and a cathode is mounted in the cavity of the Teflon sleeve and kept in close contact with it. A thread is then designed in the internal surface of the Teflon sleeve, and because of the strong field strength of the cathode triple junction (CTJ), vacuum flashover occurs and a plasma jet is acquired behind the anode. The electric field distribution of the designed coaxial PPT laboratory model is simulated by MAXWELL 3D simulation software, and the plasma density and thrust are measured by a Langnmir probe and a piezoelectric thin-film sensor, respectively. Through a series of comparative experiments, we discuss the impact of optimal designs, such as the thread and the nozzle-shaped anode, on the discharge characteristics of the coaxial PPT. The experimental and simulation results indicate that the designed coaxial PPT laboratory model presents better discharge characteristics in view of its higher plasma density and greater thrust.展开更多
Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge...Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.展开更多
Time-of-flight(ToF)transient current method is an important technique to study the transport characteristics of semiconductors.Here,both the direct current(DC)and pulsed bias ToF transient current method are employed ...Time-of-flight(ToF)transient current method is an important technique to study the transport characteristics of semiconductors.Here,both the direct current(DC)and pulsed bias ToF transient current method are employed to investigate the transport properties and electric field distribution inside the MAPbI_(3) single crystal detector.Owing to the almost homogeneous electric field built inside the detector during pulsed bias ToF measurement,the free hole mobility can be directly calculated to be about 22 cm^(2)·V^(-1)·s^(-1),and the hole lifetime is around 6.5μs–17.5μs.Hence,the mobility-lifetime product can be derived to be 1.4×10^(-4)cm^(2)·V^(-1)–3.9×10^(-4)cm^(2)·V^(-1).The transit time measured under the DC bias deviates with increasing voltage compared with that under the pulsed bias,which arises mainly from the inhomogeneous electric field distribution inside the perovskite.The positive space charge density can then be deduced to increase from 3.1×10^(10)cm^(-3)to 6.89×10^(10)cm^(-3)in a bias range of 50 V–150 V.The ToF measurement can provide us with a facile way to accurately measure the transport properties of the perovskite single crystals,and is also helpful in obtaining a rough picture of the internal electric field distribution.展开更多
We proposed a novel Al Ga N/Ga N enhancement-mode(E-mode) high electron mobility transistor(HEMT) with a dual-gate structure and carried out the detailed numerical simulation of device operation using Silvaco Atla...We proposed a novel Al Ga N/Ga N enhancement-mode(E-mode) high electron mobility transistor(HEMT) with a dual-gate structure and carried out the detailed numerical simulation of device operation using Silvaco Atlas. The dual-gate device is based on a cascode connection of an E-mode and a D-mode gate. The simulation results show that electric field under the gate is decreased by more than 70% compared to that of the conventional E-mode MIS-HEMTs(from 2.83 MV/cm decreased to 0.83 MV/cm). Thus, with the discussion of ionized trap density, the proposed dual-gate structure can highly improve electric field-related reliability, such as, threshold voltage stability. In addition, compared with HEMT with field plate structure, the proposed structure exhibits a simplified fabrication process and a more effective suppression of high electric field.展开更多
It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both...It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper.展开更多
Characteristics of electric field from a coupled mode inside an optical fiber under perturbation by three-dimensional(3D)printed long-period fiber grating(LPFG)device have been observed in this work by the experiment ...Characteristics of electric field from a coupled mode inside an optical fiber under perturbation by three-dimensional(3D)printed long-period fiber grating(LPFG)device have been observed in this work by the experiment and simulation.The various periodic index differences referring to the weights of perturbation by 3D printed LPFG device are applied on the single-mode fiber.The experimental results show that the resonant wavelength shift is a linear function of the grating period with the maximum coefficient of determination R2 of 0.9995.Some of resonant wavelengths are chosen to run simulations to investigate the electric field distribution.The scattering direction of the electric field states the magnitude of leaking optical power when the light transmits through the grating region applied to the single-mode fiber.Both the experimental and simulation results demonstrate that our proposed scheme can usefully be applied to selective tunable filters,intruder sensors,etc.展开更多
基金supported by the Science and Technology Innovation Commission of Shenzhen(No.JCYJ20180507181858539)Shenzhen Science and Technology Program(No.KQTD20180412181422399)the National Key R&D Program of China(No.2019YFB2204500).
文摘The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future.
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40876094 and JQ10974106)the National High Technology Research and Development Program of China(Grant Nos.2009AA09Z102 and 2008AA09A403)+1 种基金the Excellent Youth Fundation of Shandong Scientific Committee,China(Grant No.JQ201018)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2009AZ002)
文摘The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1631116 and 51702271)the National Key Research and Development Program of China(Grant No.2016YFE0115200)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017KW-029)Austrian Academic Exchange Service(ÖD-WTZ)through project CN 02/2016the Fundamental Research Funds for the Central Universities of China(Grant Nos.3102017zy057 and 3102018jcc036)the Young and Middle-aged Teachers Education and Scientific Research Foundation of Fujian Province,China(Grant No.JAT170407)
文摘The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not only electric contact,but also intrinsic defects,especially grown-in twin boundaries.Here,the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a{111}–{111}twin plane using the Pockels electro-optic effect.The results of laser beam induced current pulses are also obtained by the transient current technique,and we discuss the influence of the twin boundary on the electric field evolution.These studies reveal a significant distortion of the electric field,which is attributed to the buildup of space charges at twin boundaries.Also,the position of these space charge regions depends on the polarity of the detector bias.An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11104252 and 11222544)the Science Fund of the Ministry of Education of China(Grant No.20114101110003)+6 种基金the Fund for Science and Technology Innovation Team of Zhengzhou City(2011-03)the Aeronautical Science Foundation of China(Grant No.2011ZF55015)the Basic and Frontier Technology Research Program of Henan Province,China(Grant Nos.112300410264 and 122300410162)the Cooperation Fund with Fudan University,China(Grant No.KL2011-01)the Fok Ying Tung Education Foundation,China(GrantNo.131008)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0121)the National Key Basic Research Program of China(Grant No.2011CB922004)
文摘Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金Project(2009CB724504)supported by the National Basic Research Program of China
文摘The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.
文摘A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.
文摘An analytical model of the electric field distributions of buried superjunction structures,based on the charge superposition method and Green's function approach,is derived.An accurate approximation of the exact analytical model of the vertical electric field is also proposed and demonstrated by numerical simulation.The influence of the dimension and doping concentration of each layer on the electric field is discussed in detail,and the breakdown voltage is demonstrated by simulations.
基金supported by the National Natural Science Foundation of China(No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110131110005)
文摘Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional(quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas(2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field(PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm^2/(V·s)(sample a), 1307.4 cm^2/(V·s)(sample b),1561.7 cm^2/(V s)(sample c) and 678.1 cm^2/(V·s)(sample d), respectively. When the 2DEG sheet density is modulated by the drain–source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the2 DEG sheet density.
文摘A model of magnetic stimulation is presented for analysis of the spatial distributions of the electric field induced by magnetic coils.Dimensionless analysis is introduced and makes the factors influencing the magnitude of electric field into two parts:c (represents the stimulation conditions),and E 0 (reflects the geometry of coil).By 3 D simulation of the induced electric field of two kinds of coils,the effect of magnetic stimulation can be demonstrated and the factors influencing stimulating focality and depth are identified.The principles for determining the electric field magnitude,focality and magnetic stimulation depth when designing a reasonable coil and stimulator and achieving ideal stimulating effect are discussed.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No. 60925017)the National Natural Science Foundation of China (Grant Nos. 10990100,60836003 and 60776047)
文摘We have investigated the distribution of the electric field in p-i-n GaN avalanche photodiodes under different reverse bias values. type and separate absorption and multiplication (SAM) type We have also analyzed the influences of the parameters of each layer, including width and concentration, on the distribution of the electric field, especially on the breakdown voltage. It is found that a relatively high concentration of p-GaN (higher than 1×10^18 cm-3) and low cartier concentration of i-GaN (lower than 5×1016 cm-3) are helpful to restrict the electric field and reduce the breakdown voltage. In a SAM (p-i-n-i-n) structure, a suitable choice should be made for the concentration and thickness of the intermediate n-GaN layer in order to decrease breakdown voltage and prevent the device from degenerating into a p-i-n structure. Finally, the optimized material parameters of each layer are proposed.
基金supported by National Science Fund for Outstanding Young Scholars of China (No. 50625721)
文摘A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.
基金Project supported by the Funds for Innovative Research Groups of China (Grant No. 51021005)the National Basic Research Program of China (Grant No. 2009CB724504)the National Natural Science Foundation of China (Grant No. 50707036)
文摘Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.
文摘A new coaxial pulsed plasma thruster (PPT) laboratory model is designed and employed in this study. A Teflon sleeve is connected with the anode, which is shaped as a nozzle, and a cathode is mounted in the cavity of the Teflon sleeve and kept in close contact with it. A thread is then designed in the internal surface of the Teflon sleeve, and because of the strong field strength of the cathode triple junction (CTJ), vacuum flashover occurs and a plasma jet is acquired behind the anode. The electric field distribution of the designed coaxial PPT laboratory model is simulated by MAXWELL 3D simulation software, and the plasma density and thrust are measured by a Langnmir probe and a piezoelectric thin-film sensor, respectively. Through a series of comparative experiments, we discuss the impact of optimal designs, such as the thread and the nozzle-shaped anode, on the discharge characteristics of the coaxial PPT. The experimental and simulation results indicate that the designed coaxial PPT laboratory model presents better discharge characteristics in view of its higher plasma density and greater thrust.
文摘Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175131 and 11905133)the China Postdoctoral Science Foundation(Grant No.2021M692021)。
文摘Time-of-flight(ToF)transient current method is an important technique to study the transport characteristics of semiconductors.Here,both the direct current(DC)and pulsed bias ToF transient current method are employed to investigate the transport properties and electric field distribution inside the MAPbI_(3) single crystal detector.Owing to the almost homogeneous electric field built inside the detector during pulsed bias ToF measurement,the free hole mobility can be directly calculated to be about 22 cm^(2)·V^(-1)·s^(-1),and the hole lifetime is around 6.5μs–17.5μs.Hence,the mobility-lifetime product can be derived to be 1.4×10^(-4)cm^(2)·V^(-1)–3.9×10^(-4)cm^(2)·V^(-1).The transit time measured under the DC bias deviates with increasing voltage compared with that under the pulsed bias,which arises mainly from the inhomogeneous electric field distribution inside the perovskite.The positive space charge density can then be deduced to increase from 3.1×10^(10)cm^(-3)to 6.89×10^(10)cm^(-3)in a bias range of 50 V–150 V.The ToF measurement can provide us with a facile way to accurately measure the transport properties of the perovskite single crystals,and is also helpful in obtaining a rough picture of the internal electric field distribution.
基金supported by the Key Technologies Support Program of Jiangsu Province(No.BE2013002-2)the National Key Scientific Instrument and Equipment Development Projects of China(No.2013YQ470767)
文摘We proposed a novel Al Ga N/Ga N enhancement-mode(E-mode) high electron mobility transistor(HEMT) with a dual-gate structure and carried out the detailed numerical simulation of device operation using Silvaco Atlas. The dual-gate device is based on a cascode connection of an E-mode and a D-mode gate. The simulation results show that electric field under the gate is decreased by more than 70% compared to that of the conventional E-mode MIS-HEMTs(from 2.83 MV/cm decreased to 0.83 MV/cm). Thus, with the discussion of ionized trap density, the proposed dual-gate structure can highly improve electric field-related reliability, such as, threshold voltage stability. In addition, compared with HEMT with field plate structure, the proposed structure exhibits a simplified fabrication process and a more effective suppression of high electric field.
基金Supported by National Natural Science Foundation of China(11375069,11435054,11075061,11221504)Key Laboratory Foundation of Quark and Lepton Physics(Hua-Zhong Normal University)(QLPL2014P01)
文摘It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper.
文摘Characteristics of electric field from a coupled mode inside an optical fiber under perturbation by three-dimensional(3D)printed long-period fiber grating(LPFG)device have been observed in this work by the experiment and simulation.The various periodic index differences referring to the weights of perturbation by 3D printed LPFG device are applied on the single-mode fiber.The experimental results show that the resonant wavelength shift is a linear function of the grating period with the maximum coefficient of determination R2 of 0.9995.Some of resonant wavelengths are chosen to run simulations to investigate the electric field distribution.The scattering direction of the electric field states the magnitude of leaking optical power when the light transmits through the grating region applied to the single-mode fiber.Both the experimental and simulation results demonstrate that our proposed scheme can usefully be applied to selective tunable filters,intruder sensors,etc.