The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- ...The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- tative expressions of road feel, sensitivity, and operation stability of the steering are introduced. Then, according to constrained optimization features of multi-variable function, a genetic algorithm is designed. Making the road feel of the steering as optimization objective, and operation stability and sensitivity of the steering as constraints, the system parameters are optimized by the genetic and the coordinate rotation algorithms. Simulation results show that the optimization of the novel EPS system by the genetic algorithm can effectively improve the road feel, thus providing a theoretical basis for the design and optimization of the novel EPS system.展开更多
The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road ...The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.展开更多
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise...Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.展开更多
Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric pow...Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.展开更多
The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel...The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.展开更多
In this paper, the performance of a column-type electric power steering (EPS) system and vehicle has been studied and a detailed mathematical model for the system has been established. Based on the mathematic model ...In this paper, the performance of a column-type electric power steering (EPS) system and vehicle has been studied and a detailed mathematical model for the system has been established. Based on the mathematic model of the optimization design for steering feel, the parameters of the EPS system and vehicle on steering performance have been investigated. Moreover, the effects of the parameters on system stability have been analyzed and compared by the method of absolute sensitivity and the results are given in the end.展开更多
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj...The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.展开更多
The ongoing need for better fuel economy and lower exhaust pollution of vehicles has increased the employment of electric power steering(EPS)in automotives.Optimal design of EPS for a product family reduces the develo...The ongoing need for better fuel economy and lower exhaust pollution of vehicles has increased the employment of electric power steering(EPS)in automotives.Optimal design of EPS for a product family reduces the development and fabrication costs significantly.In this paper,the TOPSIS method along with the NSGA-Ⅱis employed to find an optimum family of EPS for an automotive platform.A multi-objective optimization problem is defined considering road feel,steering portability,RMS of Ackerman error,and product family penalty function(PFPF)as the conflicting objective functions.The results for the single objective optimization problems and the ones for the multi-objective optimization problem,as well as two suggested trade-off design points are presented,compared and discussed.For the two suggested points,performance at one objective function is deteriorated by about 1%,while the commonality is increased by 20%–40%,which shows the effectiveness of the proposed method in first finding the non-dominated design points and then selecting the trade-off among the obtained points.The results indicate that the obtained trade-off points have superior performance within the product family with maximum number of common parts.展开更多
Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering...Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.展开更多
A pinion-type electric power steering (EPS) equipped on a sedan is reached in this paper. A three-freedom dynamic model of this system is created. The variables affecting assist character is analyzed. The formulas of ...A pinion-type electric power steering (EPS) equipped on a sedan is reached in this paper. A three-freedom dynamic model of this system is created. The variables affecting assist character is analyzed. The formulas of simpled steering resistance force and the relationship between assist gain and vehicle speed are presented for the first time. Assist character is found based on the parameters of a sedan at last. This assist character is fit for the control rule of the EPS system through analyzing this character. The assist character figure offers reference for system design and control. Furthermore, this research method has generality for assist character of different kinds of vehicles.展开更多
电动助力转向(electric power steering,EPS)系统是车辆常用的转向执行器,其失效将严重影响驾乘人员的安全。为提高EPS系统的安全性与可靠性,基于功能安全标准建立EPS系统安全冗余机制:基于ISO26262对EPS系统进行研究,通过相关项定义、...电动助力转向(electric power steering,EPS)系统是车辆常用的转向执行器,其失效将严重影响驾乘人员的安全。为提高EPS系统的安全性与可靠性,基于功能安全标准建立EPS系统安全冗余机制:基于ISO26262对EPS系统进行研究,通过相关项定义、危害分析与风险评估(HARA),得到系统的功能安全目标与需求,并对其进行分配;设计EPS系统架构、容错机制,以提高系统的安全性;最后,对所设计的安全冗余机制进行台架试验。结果表明,在单侧桥驱芯片故障、单侧电机位置传感器故障、双侧电机位置传感器故障等故障注入的情况下,系统能够实现预期响应,满足功能安全目标,验证了所设计安全冗余机制的有效性。展开更多
Electrical power assisted steering (EPAS) is one of the key components, especially for electrical vehicle. It has attracted much attention for their advantages with respect to improved fuel economy and has been widely...Electrical power assisted steering (EPAS) is one of the key components, especially for electrical vehicle. It has attracted much attention for their advantages with respect to improved fuel economy and has been widely adopted as automotive power-steering equipment in recent years. EPS (electrical power steering) controllers contain MCU (microprocessor control unit) to implement the complex control algorithms. EPS control strategy development is the core technology of the whole system. To achieve the better performance of driving, both mechanical structures and electrical structures are totally designed as a whole. Model-based development is recommended to software design. There are several trends about EPS’ future, such as high power EPS development, high voltage EPS development and steering-by-wire technology.展开更多
为降低轮毂电机电动汽车非簧载质量增加对整车操纵稳定性的影响,以某轮毂电机电动汽车电动助力转向系统(Electric Power Steering,EPS)为研究对象,对其参数匹配和控制策略进行研究。设计了目标车型的直线型助力特性曲线,在助力控制的基...为降低轮毂电机电动汽车非簧载质量增加对整车操纵稳定性的影响,以某轮毂电机电动汽车电动助力转向系统(Electric Power Steering,EPS)为研究对象,对其参数匹配和控制策略进行研究。设计了目标车型的直线型助力特性曲线,在助力控制的基础上加入阻尼、回正控制,采用PID控制算法对助力电流进行调节。基于ADAMS/Car搭建轮毂电机电动汽车整车动力学模型,通过MATLAB/Simulink搭建EPS控制模型,实现联合仿真。对操纵稳定性进行了转向盘角阶跃和转向盘角脉冲仿真试验,加入EPS控制后,整车横摆角速度、侧向加速度、质心侧偏角值均有所降低。结果表明:研究的EPS控制策略提高了轮毂电机电动汽车的操纵稳定性,具有较好的控制效果。展开更多
基金Supported by the National Natural Science Foundation of China(51005115)the Risiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(SKLMT-KFKT-201105)theScience Fund of State Key Laboratory of Automotive Satefy and Energy in Tsinghua University(KF11202)~~
文摘The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- tative expressions of road feel, sensitivity, and operation stability of the steering are introduced. Then, according to constrained optimization features of multi-variable function, a genetic algorithm is designed. Making the road feel of the steering as optimization objective, and operation stability and sensitivity of the steering as constraints, the system parameters are optimized by the genetic and the coordinate rotation algorithms. Simulation results show that the optimization of the novel EPS system by the genetic algorithm can effectively improve the road feel, thus providing a theoretical basis for the design and optimization of the novel EPS system.
基金supported by National Natural Science Foundation of China (Grant No. 51005115, No. 51005248)Science Fund of State Key Laboratory of Automotive Safety and Energy of China (Grant No. KF11201)
文摘The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.
基金supported Foundation of National Development and Reform Commission of China (No. 2040)
文摘Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.
基金Foundation item: Projects(51005115, 51205191) supported by the National Natural Science Foundation of China Project(2012-NELEV-03) supported by the Research Foundation of National Engineering Laboratory for Electric Vehicles, China+2 种基金 Project(kfjj 120105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University, China Project supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics, China Project supported by the Fundamental Research Funds for the Central Universities, China
文摘Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.
基金Projects(51005115,51205191)supported by the National Natural Science Foundation of ChinaProject(QC201101)supported by the Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province,China+1 种基金Project(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,ChinaProjects(NS2013015,NS2012086)supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics,and NUAA Research Funding,China
文摘The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.
基金Project supported by the National Natural Science Foundation of China (Grant No.60674067)the Scientific and Techno-logical Foundation of Hubei Province (Grant No.2006AA101B13)
文摘In this paper, the performance of a column-type electric power steering (EPS) system and vehicle has been studied and a detailed mathematical model for the system has been established. Based on the mathematic model of the optimization design for steering feel, the parameters of the EPS system and vehicle on steering performance have been investigated. Moreover, the effects of the parameters on system stability have been analyzed and compared by the method of absolute sensitivity and the results are given in the end.
基金Projects(51005115, 51005248) supported by the National Natural Science Foundation of ChinaProject(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of State Key Laboratory of Mechanical Transmission in Chongqing University, ChinaProject(QC201101) supported by Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province, China
文摘The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.
文摘The ongoing need for better fuel economy and lower exhaust pollution of vehicles has increased the employment of electric power steering(EPS)in automotives.Optimal design of EPS for a product family reduces the development and fabrication costs significantly.In this paper,the TOPSIS method along with the NSGA-Ⅱis employed to find an optimum family of EPS for an automotive platform.A multi-objective optimization problem is defined considering road feel,steering portability,RMS of Ackerman error,and product family penalty function(PFPF)as the conflicting objective functions.The results for the single objective optimization problems and the ones for the multi-objective optimization problem,as well as two suggested trade-off design points are presented,compared and discussed.For the two suggested points,performance at one objective function is deteriorated by about 1%,while the commonality is increased by 20%–40%,which shows the effectiveness of the proposed method in first finding the non-dominated design points and then selecting the trade-off among the obtained points.The results indicate that the obtained trade-off points have superior performance within the product family with maximum number of common parts.
基金Supported by National Natural Science Foundation of China (Grant No. 51505178)China Postdoctoral Science Foundation (Grant No. 2014M561289)。
文摘Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.
文摘A pinion-type electric power steering (EPS) equipped on a sedan is reached in this paper. A three-freedom dynamic model of this system is created. The variables affecting assist character is analyzed. The formulas of simpled steering resistance force and the relationship between assist gain and vehicle speed are presented for the first time. Assist character is found based on the parameters of a sedan at last. This assist character is fit for the control rule of the EPS system through analyzing this character. The assist character figure offers reference for system design and control. Furthermore, this research method has generality for assist character of different kinds of vehicles.
文摘电动助力转向(electric power steering,EPS)系统是车辆常用的转向执行器,其失效将严重影响驾乘人员的安全。为提高EPS系统的安全性与可靠性,基于功能安全标准建立EPS系统安全冗余机制:基于ISO26262对EPS系统进行研究,通过相关项定义、危害分析与风险评估(HARA),得到系统的功能安全目标与需求,并对其进行分配;设计EPS系统架构、容错机制,以提高系统的安全性;最后,对所设计的安全冗余机制进行台架试验。结果表明,在单侧桥驱芯片故障、单侧电机位置传感器故障、双侧电机位置传感器故障等故障注入的情况下,系统能够实现预期响应,满足功能安全目标,验证了所设计安全冗余机制的有效性。
基金The Innovation and Technology Fund of Hong Kong Government ( No. ITP/042 /08AP &No. ITP/003 /10AP)
文摘Electrical power assisted steering (EPAS) is one of the key components, especially for electrical vehicle. It has attracted much attention for their advantages with respect to improved fuel economy and has been widely adopted as automotive power-steering equipment in recent years. EPS (electrical power steering) controllers contain MCU (microprocessor control unit) to implement the complex control algorithms. EPS control strategy development is the core technology of the whole system. To achieve the better performance of driving, both mechanical structures and electrical structures are totally designed as a whole. Model-based development is recommended to software design. There are several trends about EPS’ future, such as high power EPS development, high voltage EPS development and steering-by-wire technology.
文摘为降低轮毂电机电动汽车非簧载质量增加对整车操纵稳定性的影响,以某轮毂电机电动汽车电动助力转向系统(Electric Power Steering,EPS)为研究对象,对其参数匹配和控制策略进行研究。设计了目标车型的直线型助力特性曲线,在助力控制的基础上加入阻尼、回正控制,采用PID控制算法对助力电流进行调节。基于ADAMS/Car搭建轮毂电机电动汽车整车动力学模型,通过MATLAB/Simulink搭建EPS控制模型,实现联合仿真。对操纵稳定性进行了转向盘角阶跃和转向盘角脉冲仿真试验,加入EPS控制后,整车横摆角速度、侧向加速度、质心侧偏角值均有所降低。结果表明:研究的EPS控制策略提高了轮毂电机电动汽车的操纵稳定性,具有较好的控制效果。