Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are compre...Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are comprehensively analyzed.The Raman spectra reveal that the ATT-pPoly film is composed of grain boundary and crystalline regions.The preferred orientation is the(111)direction.The grain size increases from 16−23 nm to 21−47 nm,by~70%on average.Comparing with other reported films,Hall measurements reveal that the ATT-pPoly film has a higher carrier concentration(>10^(20)cm^(−3))and higher carrier mobility(>30 cm2/(V·s)).The superior properties of the ATT-pPoly film are attributed to the heavy doping and improved grain size.Heavy doping property is proved by the mean sheet resistance(Rsheet,m)and distribution profile.The R_(sheet,m)decreases by more than 30%,and it can be further decreased by 90%if the annealing temperature or duration is increased.The boron concentration of ATT-pPoly film annealed at 950℃ for 45 min is~3×10^(20)cm^(−3),and the distribution is nearly the same,except near the surface.Besides,the standard deviation coefficient(σ)of Rsheet,m is less than 5.0%,which verifies the excellent uniformity of ATT-pPoly film.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
The perylene (C20H12) layer effect on the electrical and dielectric properties of Al/p-Si (MS) and Al/perylene/p-Si (MPS) diodes have been investigated and compared in the frequency range of 0.7 kHz-2 MHz. Exper...The perylene (C20H12) layer effect on the electrical and dielectric properties of Al/p-Si (MS) and Al/perylene/p-Si (MPS) diodes have been investigated and compared in the frequency range of 0.7 kHz-2 MHz. Experimental results show that C-V characteristics give an anomalous peak for two structures at low frequencies due to interface states (Nss) and series resistance (Rs). The increases in C and G/o3 at low frequencies confirm that the charges at interface can easily follow an ac signal and yield excess capacitance and conductance. The frequency-dependent dielectric constant (er) and dielectric loss (e') are subtracted using C and G/co data at 1.5 V. The eI and e" values are found to be strongly dependent on frequency and voltage, and their large values at low frequencies can be attributed to the excess polarization coming from charges at traps. Plots of ln(o'ac)-ln(w) for two structures have two linear regions, with slopes of 0.369 and 1.166 for MS, and of 0.077 and 1.061 for MPS, respectively. From the C 2-V characteristics, the doping acceptor atom concentration (NA) and barrier height (,~) for Schottky barrier diodes (SBDs) 1.303 ~ 1015 cm-3, and 1.10 and I. 13 eV, respectively. of MS and MPS types are also obtained to be 1.484 ~ 1015展开更多
Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 ...Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics.展开更多
With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2...With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.展开更多
How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote ...How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.展开更多
Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supp...Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.展开更多
The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0-1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron micro...The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0-1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO2 content increasing. A new second phase (Zn2SiO4) and a glass phase (Bi2SiO5) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi2O3 vaporization. The electric measurement shows that the incorporation of SiO2 can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO2 are in the range of 36.8-69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO2 content of 0.75mol%.展开更多
Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The stru...Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.展开更多
AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,densit...AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,density,hardness,and contact resistance of the Ag Sn O_2/Bi_2O_3,AgSnO_2/La_2O_3,and AgSnO_2/Ti O_2 contact materials were measured and analyzed.The arc-eroded surface morphologies of the doped AgSnO_2 contact materials were investigated by scanning electron microscopy(SEM).The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO_2 contact materials were discussed.The results indicate that the physical properties can be improved and the contact resistance of the AgSnO_2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures.展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was pr...The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.展开更多
The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a ho...The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element.展开更多
The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the additio...The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the addition of excess boron(w(B0〉0.004 1 wt%) led to the formation of Fe2B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest { 100} fiber texture, Goss texture and the weakest { 111 } fiber texture among the five tested steels. Flux density firstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss first sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.展开更多
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb209, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly...The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb209, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan 5 decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Cao.ss(LiCe)0.04[]0.04Bi2Nb209 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (Tc) found to be 13.3 pC/N and 960 ℃ respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.展开更多
The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling ra...The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.展开更多
The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysi...The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.展开更多
基金support given by the Natural Science Foundation of Nantong(Grant NO.JC2023065)the Research Program of Nantong Institute of Technology(Grant NO.2023XK(B)07).
文摘Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are comprehensively analyzed.The Raman spectra reveal that the ATT-pPoly film is composed of grain boundary and crystalline regions.The preferred orientation is the(111)direction.The grain size increases from 16−23 nm to 21−47 nm,by~70%on average.Comparing with other reported films,Hall measurements reveal that the ATT-pPoly film has a higher carrier concentration(>10^(20)cm^(−3))and higher carrier mobility(>30 cm2/(V·s)).The superior properties of the ATT-pPoly film are attributed to the heavy doping and improved grain size.Heavy doping property is proved by the mean sheet resistance(Rsheet,m)and distribution profile.The R_(sheet,m)decreases by more than 30%,and it can be further decreased by 90%if the annealing temperature or duration is increased.The boron concentration of ATT-pPoly film annealed at 950℃ for 45 min is~3×10^(20)cm^(−3),and the distribution is nearly the same,except near the surface.Besides,the standard deviation coefficient(σ)of Rsheet,m is less than 5.0%,which verifies the excellent uniformity of ATT-pPoly film.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
文摘The perylene (C20H12) layer effect on the electrical and dielectric properties of Al/p-Si (MS) and Al/perylene/p-Si (MPS) diodes have been investigated and compared in the frequency range of 0.7 kHz-2 MHz. Experimental results show that C-V characteristics give an anomalous peak for two structures at low frequencies due to interface states (Nss) and series resistance (Rs). The increases in C and G/o3 at low frequencies confirm that the charges at interface can easily follow an ac signal and yield excess capacitance and conductance. The frequency-dependent dielectric constant (er) and dielectric loss (e') are subtracted using C and G/co data at 1.5 V. The eI and e" values are found to be strongly dependent on frequency and voltage, and their large values at low frequencies can be attributed to the excess polarization coming from charges at traps. Plots of ln(o'ac)-ln(w) for two structures have two linear regions, with slopes of 0.369 and 1.166 for MS, and of 0.077 and 1.061 for MPS, respectively. From the C 2-V characteristics, the doping acceptor atom concentration (NA) and barrier height (,~) for Schottky barrier diodes (SBDs) 1.303 ~ 1015 cm-3, and 1.10 and I. 13 eV, respectively. of MS and MPS types are also obtained to be 1.484 ~ 1015
基金Projects(5110205551462005)supported by the National Natural Science Foundation of China
文摘Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics.
文摘With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.
基金the funding of National Key R&D Program of China(No.2020YFA0711700)Hunan National Natural Science Foundation(2021JJ30652)+3 种基金National Natural Science Foundation of China(52002404)Natural Science Foundation of Guangdong Province(2020A1515011198)Characteristic Innovation Projects of Colleges and Universities in Guangdong Province(2020KT SCX081)State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China
文摘How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.
基金National Natural Science Foundation of China,Grant/Award Number:62274112Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010929Science and Technology Plan project of Shenzhen,Grant/Award Numbers:JCYJ20220531103601003,20220810154601001。
文摘Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.
文摘The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0-1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO2 content increasing. A new second phase (Zn2SiO4) and a glass phase (Bi2SiO5) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi2O3 vaporization. The electric measurement shows that the incorporation of SiO2 can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO2 are in the range of 36.8-69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO2 content of 0.75mol%.
基金the Program for New Century Excellent Talents in Universities, MOE, China (No. NCET-05-0764)the Tackle Key Problems on Scientific Technology Foundation of Chongqing Municipality (Nos. CSTC2005AA4006-A6 and CSTC2004AC4034)+2 种基金the Natural Science Foundation of Chongqing Municipality (No. CSTC2005BA4016)China Postdoctoral Science Foundation (No. 2005037544)the Inno-base for Graduates of Chongqing University (No. 200506Y1B0240131).
文摘Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.
基金financially supported by the National Natural Science Foundation of China (No.51777057)the Natural Science Foundation of Hebei Province, China (No.E2016202106)the Science and Technology Research Project of Colleges and Universities in Hebei Province, China (No.ZD2016078)
文摘AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,density,hardness,and contact resistance of the Ag Sn O_2/Bi_2O_3,AgSnO_2/La_2O_3,and AgSnO_2/Ti O_2 contact materials were measured and analyzed.The arc-eroded surface morphologies of the doped AgSnO_2 contact materials were investigated by scanning electron microscopy(SEM).The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO_2 contact materials were discussed.The results indicate that the physical properties can be improved and the contact resistance of the AgSnO_2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures.
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金Project supported by Science and Technology Foundation of Yunnan Province (2002GG-09)
文摘The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.
基金Funded by the 2012 Opening Funding of National Key Laboratory on Advanced Composites in Special Environment
文摘The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element.
基金financial supports by the Xinyu Iron and Steel Company of China
文摘The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the addition of excess boron(w(B0〉0.004 1 wt%) led to the formation of Fe2B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest { 100} fiber texture, Goss texture and the weakest { 111 } fiber texture among the five tested steels. Flux density firstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss first sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50632030 and 10804130) and the Shaanxi Provincial Natural Science Foundation, China (Grant No. 2011JM6012).
文摘The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb209, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan 5 decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Cao.ss(LiCe)0.04[]0.04Bi2Nb209 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (Tc) found to be 13.3 pC/N and 960 ℃ respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.
基金This work is financially supported by the National Natural Science Foundation of China (No. 50471045)Shanghai Nano-technology Promotion Center (No. 0452nm026).
文摘The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.
基金supported by the National Natural Science Foundation of China(Nos.51274200 and 51221462)
文摘The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.