For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best coo...For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best cooperative mechanism(BCM)is proposed for CR with EH. To get the optimal estimation performance, a quantum fireworks algorithm(QFA) is designed to resolve the difficulties of maximal throughput and EH, and the proposed cooperative mechanism is called as QFA-BCM. The proposed QFA combines the advantages of quantum computation theory with the fireworks algorithm(FA). Thus the QFA is able to obtain the optimal solution and its convergence performance is proved. By using the new cooperation mechanism and computing algorithm, the proposed QFA-BCM method can achieve comparable maximal throughput in the new timeslot structure. Simulation results have proved that the QFA-BCM method is superior to previous non-cooperative and cooperative mechanisms.展开更多
This paper provides a technical analysis of energy harvesting (EH) in the field of power and energy sector, including different aspects of harvesting energy, individual case history, control strategies of harvesting i...This paper provides a technical analysis of energy harvesting (EH) in the field of power and energy sector, including different aspects of harvesting energy, individual case history, control strategies of harvesting in the field of power and energy sector together with the current trend and future aspects of it. EH is comparatively a new concept which is growing very fast since the 20th century and catching new generation research approaches. This paper not only describes the past and current scenarios of harvesting energy with radio frequency (RF) and renewables but also gives author’s own anticipation of the upcoming future trends of it by comparing the case histories.展开更多
A cognitive radio(CR) network with energy harvesting(EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model(HMM) is used to characterize the imperfect spectrum sensing...A cognitive radio(CR) network with energy harvesting(EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model(HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree(WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user(SU) and the interference to the primary user(PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming(MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution(DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service(Qos). Numerical results are given to verify our analysis.展开更多
In this paper,the detection capabilities and system performance of an energy harvesting(EH)Internet of Things(Io T)architecture in the presence of an unmanned aerial vehicle(UAV)eavesdropper(UE)are investigated.The co...In this paper,the detection capabilities and system performance of an energy harvesting(EH)Internet of Things(Io T)architecture in the presence of an unmanned aerial vehicle(UAV)eavesdropper(UE)are investigated.The communication protocol is divided into two phases.In the first phase,a UAV relay(UR)cooperates with a friendly UAV jammer(UJ)to detect the UE,and the UR and UJ harvest energy from a power beacon(PB).In the second phase,a ground base station(GBS)sends a confidential signal to the UR using non-orthogonal multiple access(NOMA);the UR then uses its harvested energy to forward this confidential signal to IoT destinations(IDs)using the decode-and-forward(DF)technique.Simultaneously,the UJ uses its harvested energy to emit an artificial signal to combat the detected UE.A closed-form expression for the probability of detecting the UE(the detection probability,DP)is derived to analyze the detection performance.Furthermore,the intercept probability(IP)and throughput of the considered IoT architecture are determined.Accordingly,we identify the optimal altitudes for the UR and UJ to enhance the system and secrecy performance.Monte Carlo simulations are employed to verify our approach.展开更多
A cooperative full-duplex(FD)non-orthogonal multiple access(NOMA)network is consid-ered,in which a source communicate with multiple users via multiple energy harvesting(EH)FD relays.Based on this structure,a novel rel...A cooperative full-duplex(FD)non-orthogonal multiple access(NOMA)network is consid-ered,in which a source communicate with multiple users via multiple energy harvesting(EH)FD relays.Based on this structure,a novel relay selection scheme is proposed over Nakagamim fading channels by considering both the channel state information(CSI)and the energy statuses of relays.A finite Markov chain is adopted to capture the evolution of relay batteries and simplify the performance analysis by making some reasonable assumptions.General closed-form expressions of the outage probability and the ergodic sumrate are derived.All the theoretical results are validated by Monte-Carlo simulations.The impacts of various system parameters,such as the number of relays,the self-interference(SI)at the involved relay and battery size,on the performance are extensively investi-gated.It is shown that the usage of NOMA with FD relaying outperforms the half-duplex(HD)-NO-MA and conventional orthogonal multiple access(OMA)network when the self-interference is not too large.展开更多
基金supported by the National Natural Science Foundation of China(61571149)the Special China Postdoctoral Science Foundation(2015T80325)+2 种基金the Heilongjiang Postdoctoral Fund(LBH-Z13054)the China Scholarship Council and the Fundamental Research Funds for the Central Universities(HEUCFP201772HEUCF160808)
文摘For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best cooperative mechanism(BCM)is proposed for CR with EH. To get the optimal estimation performance, a quantum fireworks algorithm(QFA) is designed to resolve the difficulties of maximal throughput and EH, and the proposed cooperative mechanism is called as QFA-BCM. The proposed QFA combines the advantages of quantum computation theory with the fireworks algorithm(FA). Thus the QFA is able to obtain the optimal solution and its convergence performance is proved. By using the new cooperation mechanism and computing algorithm, the proposed QFA-BCM method can achieve comparable maximal throughput in the new timeslot structure. Simulation results have proved that the QFA-BCM method is superior to previous non-cooperative and cooperative mechanisms.
文摘This paper provides a technical analysis of energy harvesting (EH) in the field of power and energy sector, including different aspects of harvesting energy, individual case history, control strategies of harvesting in the field of power and energy sector together with the current trend and future aspects of it. EH is comparatively a new concept which is growing very fast since the 20th century and catching new generation research approaches. This paper not only describes the past and current scenarios of harvesting energy with radio frequency (RF) and renewables but also gives author’s own anticipation of the upcoming future trends of it by comparing the case histories.
基金Project supported by the National Natural Science Foundation of China(Grant No.61301179)the Doctorial Programs Foundation of the Ministry of Education of China(Grant No.20110203110011)the 111 Project(Grant No.B08038)
文摘A cognitive radio(CR) network with energy harvesting(EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model(HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree(WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user(SU) and the interference to the primary user(PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming(MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution(DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service(Qos). Numerical results are given to verify our analysis.
基金supported in part by Thailand Science Research and Innovation(TSRI)National Research Council of Thailand(NRCT)via International Research Network Program(IRN61W0006)by Khon Kaen University,Thailand。
文摘In this paper,the detection capabilities and system performance of an energy harvesting(EH)Internet of Things(Io T)architecture in the presence of an unmanned aerial vehicle(UAV)eavesdropper(UE)are investigated.The communication protocol is divided into two phases.In the first phase,a UAV relay(UR)cooperates with a friendly UAV jammer(UJ)to detect the UE,and the UR and UJ harvest energy from a power beacon(PB).In the second phase,a ground base station(GBS)sends a confidential signal to the UR using non-orthogonal multiple access(NOMA);the UR then uses its harvested energy to forward this confidential signal to IoT destinations(IDs)using the decode-and-forward(DF)technique.Simultaneously,the UJ uses its harvested energy to emit an artificial signal to combat the detected UE.A closed-form expression for the probability of detecting the UE(the detection probability,DP)is derived to analyze the detection performance.Furthermore,the intercept probability(IP)and throughput of the considered IoT architecture are determined.Accordingly,we identify the optimal altitudes for the UR and UJ to enhance the system and secrecy performance.Monte Carlo simulations are employed to verify our approach.
基金the National Natural Science Foundation of China(No.61901245).
文摘A cooperative full-duplex(FD)non-orthogonal multiple access(NOMA)network is consid-ered,in which a source communicate with multiple users via multiple energy harvesting(EH)FD relays.Based on this structure,a novel relay selection scheme is proposed over Nakagamim fading channels by considering both the channel state information(CSI)and the energy statuses of relays.A finite Markov chain is adopted to capture the evolution of relay batteries and simplify the performance analysis by making some reasonable assumptions.General closed-form expressions of the outage probability and the ergodic sumrate are derived.All the theoretical results are validated by Monte-Carlo simulations.The impacts of various system parameters,such as the number of relays,the self-interference(SI)at the involved relay and battery size,on the performance are extensively investi-gated.It is shown that the usage of NOMA with FD relaying outperforms the half-duplex(HD)-NO-MA and conventional orthogonal multiple access(OMA)network when the self-interference is not too large.